下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精第4課時(shí)同角三角函數(shù)的基本關(guān)系基礎(chǔ)達(dá)標(biāo)(水平一)1.已知sinα=55,則sin4α—cos4α的值為()A.—15B.—35C.15【解析】sin4α—cos4α=(sin2α+cos2α)(sin2α—cos2α)=sin2α—cos2α=2sin2α—1=-35【答案】B2.若α為第三象限角,則cosα1-sin2αA.3B.-3C.1D.-1【解析】因?yàn)棣翞榈谌笙藿?,所以cosα<0,sinα<0。故原式=cosαco=cosα-cosα+【答案】B3.若sinθ=m-4m-3,cosθ=5-mmA.4 B.8 C。4或8 D.4〈m<8【解析】由sin2θ+cos2θ=1,得m-4m-32+5-mm-32=1,【答案】C4.設(shè)A是△ABC的一個(gè)內(nèi)角,且sinA+cosA=23,則這個(gè)三角形是()A.銳角三角形 B。鈍角三角形C.不等腰的直角三角形 D.等腰直角三角形【解析】∵(sinA+cosA)2=49,即1+2sinAcosA=49,∴sinAcosA=—518∵0〈A<π,∴sinA>0,cosA〈0,即A是鈍角。故選B?!敬鸢浮緽5.若tanα=2,則1+sinαcosα=.
【解析】1+sinαcosα=1+sinαcosαsin2α+cos2【答案】76。已知f(x)=1-x1+x,若α∈π2,π,則f(cosα)+f(【解析】因?yàn)棣痢师?,π,所以sinf(cosα)+f(—cosα)=1-cosα1+cosα+1+cosα1-cosα=(1-cos【答案】27.在△ABC中,sinA+cosA=22,求tanA的值【解析】∵sinA+cosA=22,∴(sinA+cosA)2=12,即1+2sinAcosA=1∴2sinAcosA=-12∵0°<A<180°,∴sinA>0,cosA〈0?!鄐inA—cosA>0.∵(sinA-cosA)2=1—2sinAcosA=32∴sinA—cosA=62.由①+②,得sinA=2+由①—②,得cosA=2-∴tanA=sinAcosA=2+64×拓展提升(水平二)8.已知在△ABC中,tanA=—512,則cosA=()A.1213 B.513 C.—1213【解析】∵sin2A+cos2A=1,∴tan2A+1=1co∴cos2A=11+tan2A由tanA=-512知,π2〈A<π,∴cosA〈∴cosA=-1213【答案】C9.若θ是銳角,且2sinθcosθ=a,則sinθ+cosθ等于().A。a+1 B。(2-1)a+C.a+1—a2-a【解析】∵θ為銳角,∴sinθ〉0,cosθ〉0,∴a=2sinθcosθ〉0,∴(sinθ+cosθ)2=1+2sinθcosθ=1+a,∴sinθ+cosθ=a+1【答案】A10.已知sinα+2cosα=0,則2sinαcosα—cos2α的值為.
【解析】由sinα+2cosα=0得tanα=-2,故2sinαcosα—cos2α=2sinαcosα-cos2【答案】-111。已知關(guān)于x的方程2x2-(3+1)x+m=0的兩個(gè)根分別為x1=sinθ,x2=cosθ,θ∈(0,2π),求:(1)sinθ1-1(2)m的值;(3)方程的兩個(gè)根及此時(shí)θ的值.【解析】由根與系數(shù)的關(guān)系,可知sinθ+cosθ=3+12,sinθcosθ=m2。(1)sinθ1-1tanθ+cosθ1-tanθ=sin2(2)由①式兩邊平方,得1+2sinθcosθ=2+3所以sinθcosθ=34,由②式得m2=34,所以(3)當(dāng)m=32時(shí),原方程變?yōu)?x2-(3+1)x+32=解得x1=32,x2=1所以sinθ=又因?yàn)棣取?0,2π),所以θ=π
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度雪花啤酒區(qū)域獨(dú)家代理合同范本3篇
- 2025年度物流行業(yè)融資擔(dān)保協(xié)議3篇
- 教育科技推動(dòng)農(nóng)業(yè)機(jī)械化發(fā)展的路徑研究
- 教育行業(yè)在宏觀經(jīng)濟(jì)下的投資前景分析
- 2025年度綠色建筑施工現(xiàn)場臨時(shí)用電安全保障協(xié)議3篇
- 家用醫(yī)療器械的選購與使用注意事項(xiàng)
- 教育行業(yè)中的創(chuàng)新型課程教材與教具設(shè)計(jì)研究
- 實(shí)驗(yàn)教學(xué)在培養(yǎng)學(xué)生批判性思維中的作用
- 教育科技融合下的創(chuàng)新創(chuàng)業(yè)實(shí)踐
- 2025年度育嬰師實(shí)習(xí)實(shí)訓(xùn)合同范本下載3篇
- 第二章 運(yùn)營管理戰(zhàn)略
- 《三本白皮書》全文內(nèi)容及應(yīng)知應(yīng)會(huì)知識(shí)點(diǎn)
- 專題14 思想方法專題:線段與角計(jì)算中的思想方法壓軸題四種模型全攻略(解析版)
- 醫(yī)院外來器械及植入物管理制度(4篇)
- 港口與港口工程概論
- 《念珠菌感染的治療》課件
- 門店裝修設(shè)計(jì)手冊
- 考研計(jì)算機(jī)學(xué)科專業(yè)基礎(chǔ)(408)研究生考試試卷與參考答案(2025年)
- 2024護(hù)理個(gè)人年終總結(jié)
- 海南省申論真題2020年(縣級及以上)
- 蛇年金蛇賀歲
評論
0/150
提交評論