安徽省合肥市瑤海區(qū)九級2023年數(shù)學八下期末監(jiān)測試題含解析_第1頁
安徽省合肥市瑤海區(qū)九級2023年數(shù)學八下期末監(jiān)測試題含解析_第2頁
安徽省合肥市瑤海區(qū)九級2023年數(shù)學八下期末監(jiān)測試題含解析_第3頁
安徽省合肥市瑤海區(qū)九級2023年數(shù)學八下期末監(jiān)測試題含解析_第4頁
安徽省合肥市瑤海區(qū)九級2023年數(shù)學八下期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年八下數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.在平面直角坐標系xOy中,已知點A(2,﹣2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有()個.A.5 B.4 C.3 D.22.在四邊形中,,再補充一個條件使得四邊形為菱形,這個條件可以是()A. B.C. D.與互相平分3.在下列命題中,是假命題的個數(shù)有()①如果,那么.②兩條直線被第三條直線所截,同位角相等③面積相等的兩個三角形全等④三角形的一個外角等于不相鄰的兩個內角的和.A.3個 B.2個 C.1個 D.0個4.一個直角三角形的兩邊長分別為5和12,則第三邊的長為()A.13 B.14 C.119 D.13或1195.計算的結果是()A.0 B.1 C.2 D.26.甲乙兩人勻速從同一地點到1511米處的圖書館看書,甲出發(fā)5分鐘后,乙以51米/分的速度沿同一路線行走.設甲乙兩人相距s(米),甲行走的時間為t(分),s關于t的函數(shù)圖象的一部分如圖所示.下列結論正確的個數(shù)是()(1)t=5時,s=151;(2)t=35時,s=451;(3)甲的速度是31米/分;(4)t=12.5時,s=1.A.1個 B.2個 C.3個 D.4個7.下列四組圖形中,左邊的圖形與右邊的圖形成中心對稱的有()A.1組 B.2組 C.3組 D.4組8.如果分式有意義,則x的取值范圍是()A.x=﹣3 B.x>﹣3 C.x≠﹣3 D.x<﹣39.如圖是由四個全等的直角三角形拼接而成的圖形,其中,,則的長是()A.7 B.8 C. D.10.如圖,在矩形ABCD中,有以下結論:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤當∠ABD=45°時,矩形ABCD會變成正方形.正確結論的個數(shù)是()A.2 B.3 C.4 D.5二、填空題(每小題3分,共24分)11.如圖,在中,,,點、分別是邊、上的動點.連接、,點、分別是、的中點,連接.則的最小值為________.12.如圖,在平面直角坐標系中,直線l為正比例函數(shù)y=x的圖象,點A1的坐標為(1,0),過點A1作x軸的垂線交直線l于點D1,以A1D1為邊作正方形A1B1C1D1;過點C1作直線l的垂線,垂足為A2,交x軸于點B2,以A2B2為邊作正方形A2B2C2D2;過點C2作x軸的垂線,垂足為A3,交直線l于點D3,以A3D3為邊作正方形A3B3C3D3,…,按此規(guī)律操作下所得到的正方形AnBnCnDn的面積是_____.13.如圖,在中,,,,點,都在邊上,的平分線垂直于,垂足為,的平分線垂直于,垂足為,則的長__________.14.如圖,正方形的邊長為5,,連結,則線段的長為________.15.Rt△ABC與直線l:y=﹣x﹣3同在如圖所示的直角坐標系中,∠ABC=90°,AC=2,A(1,0),B(3,0),將△ABC沿x軸向左平移,當點C落在直線l上時,線段AC掃過的面積等于_____.16.如果一個平行四邊形一個內角的平分線分它的一邊為1∶2的兩部分,那么稱這樣的平行四邊形為“協(xié)調平行四邊形”,稱該邊為“協(xié)調邊”.當“協(xié)調邊”為3時,這個平行四邊形的周長為_________.17.列不等式:據(jù)中央氣象臺報道,某日我市最高氣溫是33℃,最低氣溫是25℃,則當天的氣溫t(℃)的變化范圍是______.18.已知,若整數(shù)滿足,則__________.三、解答題(共66分)19.(10分)在四個互不相等的正整數(shù)中,最大的數(shù)是8,中位數(shù)是4,求這四個數(shù)(按從小到大的順序排列)20.(6分)如圖,正方形網(wǎng)格中的每個小正方形邊長都為1,每個小正方形的頂點叫做格點.(1)以格點為頂點畫,使三這長分別為;(2)若的三邊長分別為m、n、d,滿足,求三邊長,若能畫出以格點為頂點的三角形,請畫出該格點三角形.21.(6分)如圖所示,在正方形中,是上一點,是延長線上一點,且,連接,.(1)求證:;(2)若點在上,且,連接,求證:.22.(8分)如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,過A點作AG∥DB,交CB的延長線于點G.(1)求證:DE∥BF;(2)若∠G=90,求證:四邊形DEBF是菱形.23.(8分)解不等式組:.并把它的解集在數(shù)軸上表示出來24.(8分)如圖,直線分別與軸、軸交于點、點,與直線交于點.(1)若,請直接寫出的取值范圍;(2)點在直線上,且的面積為3,求點的坐標?25.(10分)(1)化簡;(m+2+)?(2)先化簡,再求值;(+x+2)÷,其中|x|=226.(10分)某汽車制造商對新投入市場的兩款汽車進行了調查,這兩款汽車的各項得分如下表所示:汽車型號安全性能省油效能外觀吸引力內部配備A3123B3222(得分說明:3分﹣﹣極佳,2分﹣﹣良好,1分﹣﹣尚可接受)(1)技術員認為安全性能、省油效能、外觀吸引力、內部配備這四項的占比分別為30%,30%,20%,20%,并由此計算得到A型汽車的綜合得分為2.2,B型汽車的綜合得分為_____;(2)請你寫出一種各項的占比方式,使得A型汽車的綜合得分高于B型汽車的綜合得分.(說明:每一項的占比大于0,各項占比的和為100%)答:安全性能:_____,省油效能:_____,外觀吸引力:_____,內部配備:_____.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題解析:∵A(2,?2),①如圖:若OA=AP,則②如圖:若OA=OP,則③如圖:若OP=AP,則綜上可得:符合條件的點P有四解.故選B.點睛:等腰三角形的問題,一般都分類討論.2、D【解析】

由在四邊形ABCD中,對角線AC,BD互相平分,可得四邊形ABCD是平行四邊形,又由對角線互相垂直的平行四邊形是菱形,即可求得答案.【詳解】解:∵在四邊形ABCD中,對角線AC,BD互相平分,∴四邊形ABCD是平行四邊形,∵AC⊥BD,∴四邊形ABCD是菱形,故選:D.【點睛】此題考查了平行四邊形的判定以及菱形的判定.此題比較簡單,注意掌握對角線互相垂直的平行四邊形是菱形定理的應用.3、A【解析】

兩個數(shù)的平方相等,則兩個數(shù)相等或互為相反數(shù);兩條直線平行,同位角相等;三角形面積相等,但不一定全等;根據(jù)三角形的外角性質得到三角形的一個外角等于與它不相鄰的兩個內角之和,根據(jù)以上結論判斷即可.【詳解】解:①、兩個數(shù)的平方相等,則兩個數(shù)相等或互為相反數(shù),例如(-1)2=12,則-1≠1.故錯誤;

②、只有兩直線平行時,同位角相等,故錯誤;

③、若兩個三角形的面積相等,則兩個三角形不一定全等.故錯誤;

④、三角形的一個外角等于與它不相鄰的兩個內角之和,故正確;

故選:A.【點睛】本題主要考查平行線的性質,平方,全等三角形的判定,三角形的外角性質,命題與定理等知識點的理解和掌握,理解這些性質是解題的關鍵.4、D【解析】

本題已知直角三角形的兩邊長,但未明確這兩條邊是直角邊還是斜邊,因此兩條邊中的較長邊12既可以是直角邊,也可以是斜邊,所以求第三邊的長必須分類討論,即12是斜邊或直角邊的兩種情況,然后利用勾股定理求解.【詳解】當12和5均為直角邊時,第三邊=122+當12為斜邊,5為直角邊,則第三邊=122-5故第三邊的長為13或119.故選D.【點睛】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.5、B【解析】

根據(jù)零指數(shù)冪的意義即可解答.【詳解】.【點睛】本題主要考查了零指數(shù)冪的意義,記住任何非零數(shù)的零指數(shù)冪等于1是解答本題的關鍵.6、D【解析】

結合圖像可以判斷(1)(2)是否正確;由圖象可知時,米,根據(jù)速度=路程÷時間,即可得到甲行走的速度;由圖可以列出在時間為5至15范圍內的函數(shù):31t=51(t﹣5),再計算即可得到答案.【詳解】由圖象可知,當t=5時,s=151,故(1)正確;當t=35時,s=451,故(2)正確;甲的速度是151÷5=31米/分,故(3)正確;令31t=51(t﹣5),解得,t=12.5,即當t=12.5時,s=1,故(4)正確;故選D.【點睛】本題考查讀圖能力和一元一次函數(shù)的應用,解題的關鍵是能夠讀懂圖中的信息.7、C【解析】把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與另一個的圖形重合,那么這兩個圖形關于這個點成中心對稱.根據(jù)中心對稱的定義可知,圖(2)(3)(4)成中心對稱,由3組,故選C.8、C【解析】

根據(jù)分母不等于零時分式有意義,可得答案.【詳解】由題意,得:x+1≠0,解得:x≠﹣1.故選C.【點睛】本題考查的是分式有意義的條件,熟知分式有意義的條件是分母不等于零是解答此題的關鍵.9、C【解析】

由圖易知EG與FG的長,然后根據(jù)勾股定理即可求出EF的長.【詳解】解:如圖,由題意可知:AE=BG=FC=5,BE=CG=12,∴EG=BE-BG=12-5=7,F(xiàn)G=CG-FC=12-5=7,∴在Rt△EGF中,EF==7.故選C.【點睛】本題考查了勾股定理、正方形的性質;熟練掌握勾股定理是解決問題的關鍵.10、C【解析】

∵四邊形ABCD是矩形,∴AO=BO=DO=CO,AC=BD,故①③正確;∵BO=DO,∴S△ABO=S△ADO,故②正確;當∠ABD=45°時,∠AOD=90°,∴AC⊥BD,∴矩形ABCD會變成正方形,故⑤正確,而④不一定正確,矩形的對角線只是相等且互相平分,∴正確結論的個數(shù)是4.故選C.二、填空題(每小題3分,共24分)11、【解析】

連接AG,利用三角形中位線定理,可知,求出AG的最小值即可解決問題.【詳解】解:如圖1,連接,∵點、分別是、的中點,∴,∴的最小值,就是的最小值,當時,最小,如圖2,中,,∴,∵,∴,,∴,∴的最小值是.故答案為:.【點睛】本題考查平行四邊形的性質、三角形的中位線定理、垂線段最短等知識,解題的關鍵是學會添加常用輔助線,本題的突破點是確定EF的最小值,就是AG的最小值,屬于中考填空題中的壓軸題.12、()n﹣1【解析】

根據(jù)正比例函數(shù)的性質得到∠D1OA1=45°,分別求出正方形A1B1C1D1的面積、正方形A2B2C2D2的面積,總結規(guī)律解答.【詳解】∵直線l為正比例函數(shù)y=x的圖象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面積=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面積==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面積==()3﹣1,…由規(guī)律可知,正方形AnBnCnDn的面積=()n﹣1,故答案為()n﹣1.【點睛】本題考查的是正方形的性質、一次函數(shù)圖象上點的坐標特征,根據(jù)一次函數(shù)解析式得到∠D1OA1=45°,正確找出規(guī)律是解題的關鍵.13、1【解析】

證明△ABQ≌△EBQ,根據(jù)全等三角形的性質得到BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,根據(jù)三角形中位線定理計算即可.【詳解】解:在△ABQ和△EBQ中,,∴△ABQ≌△EBQ(ASA),∴BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,∴DE=CD-CE=CD-(BC-BE)=2,∵AP=PD,AQ=QE,∴PQ=DE=1,故答案為:1.【點睛】本題考查的是三角形中位線定理、全等三角形的判定和性質,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關鍵.14、【解析】

延長BG交CH于點E,根據(jù)正方形的性質證明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的長.【詳解】解:如圖,延長BG交CH于點E,

∵正方形的邊長為5,,∴AG2+BG2=AB2,∴∠AGB=90°,在△ABG和△CDH中,∴△ABG≌△CDH(SSS),

∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,

∴∠1+∠2=90°,∠5+∠6=90°,

又∵∠2+∠3=90°,∠4+∠5=90°,

∴∠1=∠3=∠5,∠2=∠4=∠6,

在△ABG和△BCE中,∴△ABG≌△BCE(ASA),

∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,

∴GE=BE-BG=4-3=1,

同理可得HE=1,

在RT△GHE中,故答案為:【點睛】本題主要考查正方形的性質、全等三角形的判定與性質、勾股定理及其逆定理的綜合運用,通過證三角形全等得出△GHE為等腰直角三角形是解題的關鍵.15、1【解析】

根據(jù)題意作出圖形,利用勾股定理求出BC,求出C’的坐標,再根據(jù)矩形的面積公式即可求解.【詳解】解:∵∠ABC=90°,AC=2,A(1,0),B(3,0),∴AB=2,∴BC==4,∴點C的坐標為(3,4),當y=4時,4=﹣x﹣3,得x=﹣7,∴C′(﹣7,4),∴CC′=10,∴當點C落在直線l上時,線段AC掃過的面積為:10×4=1,故答案為:1.【點睛】此題主要考查平移的性質,解題的關鍵是熟知一次函數(shù)的圖像與性質.16、8或1【解析】

解:如圖所示:①當AE=1,DE=2時,∵四邊形ABCD是平行四邊形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,∴平行四邊形ABCD的周長=2(AB+AD)=8;②當AE=2,DE=1時,同理得:AB=AE=2,∴平行四邊形ABCD的周長=2(AB+AD)=1;故答案為8或1.17、25≤t≤1.【解析】

根據(jù)題意、不等式的定義解答.【詳解】解:由題意得,當天的氣溫t(℃)的變化范圍是25≤t≤1,

故答案為:25≤t≤1.【點睛】本題考查的是不等式的定義,不等式的概念:用“>”或“<”號表示大小關系的式子,叫做不等式,18、【解析】

先根據(jù)確定m的取值范圍,再根據(jù),推出,最后利用來確定a的取值范圍.【詳解】解:為整數(shù)為故答案為:1.【點睛】本題考查的知識點是二次根式以及估算無理數(shù)的大小,利用“逼近法”得出的取值范圍是解此題的關鍵.三、解答題(共66分)19、這四個數(shù)為或或.【解析】分析:根據(jù)中位數(shù)的定義得出第二個數(shù)和第三個數(shù)的和是8,再根據(jù)這四個數(shù)是不相等的正整數(shù),得出這兩個數(shù)是3、5或2、6,再根據(jù)這些數(shù)都是正整數(shù)得出第一個數(shù)是2或1,再把這四個數(shù)相加即可得出答案.詳解:∵中位數(shù)是4,最大的數(shù)是8,∴第二個數(shù)和第三個數(shù)的和是8,∵這四個數(shù)是不相等的正整數(shù),∴這兩個數(shù)是3、5或2、6,∴這四個數(shù)是1,3,5,8或2,3,5,8或1,2,6,8,故答案為:1,2,6,8或1,3,5,8或2,3,5,8.點睛:此題考查了中位數(shù),掌握中位數(shù)的概念是本題的關鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).20、(1)見解析如圖(1);(2)三邊分別為,3,2是格點三角形.圖見解析.【解析】

(1)根據(jù)勾股定理畫出圖形即可.(2)先將等式變形,根據(jù)算術平方根和平方的非負性可得m和n的值,計算d的值,畫出格點三角形即可.【詳解】(1)如圖(1)所示:(2)∵,∴,解得:m=3,n=2,∴三邊長為3,2,或,3,2,如圖(2)所示:,3,2是格點三角形.【點睛】本題考查的是勾股定理,格點三角形、算術平方根和平方的非負性,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.21、(1)詳見解析;(2)詳見解析.【解析】

(1)由正方形的性質得到,,求得,根據(jù)全等三角形的判定和性質定理即可得到結論;(2)根據(jù)全等三角形的性質得到,根據(jù)線段的和差即可得到結論.【詳解】證明(1)在正方形中,∵,又∵∴∴(2)∵∴又∵∴在和△中∵又由(1)知∴∴又∵∴【點睛】本題考查了正方形的性質,全等三角形的判定和性質,熟練掌握全等三角形的判定和性質定理是解題的關鍵.22、(1)證明見解析;(2)證明見解析.【解析】

(1)在□ABCD中,AB∥CD,AB=CD,∵E、F分別為邊AB、CD的中點,∴DF=CD,BE=AB,∴DF=BE,DF∥BE,∴四邊形BEDF為平行四邊形,∴DE∥BF;(2)∵AG∥DB,∴∠G=∠DBC=90°,∴△DBC為直角三角形,又∵F為邊CD的中點,∴BF=CD=DF,又∵四邊形BEDF為平行四邊形,∴四邊形BEDF為菱形.【點睛】本題主要考查了平行四邊形的性質、菱形的判定,直角三角形中斜邊中線等于斜邊一半,解題的關鍵是掌握和靈活應用相關性質.23、1<x<4,數(shù)軸表示見解析.【解析】

分別求出各不等式的解集,再求出其公共解集即可.【詳解】,解不等式①得:x>1;解不等式②得:x<4,所以不等式組的解集為:1<x<4,解集在數(shù)軸上表示為:【點睛】此題主要考查了解一元一次不等式組,以及在數(shù)軸上表示不等式的解集,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.24、(1)x>2;(2)(0,3)或(4,1).【解析】

(1)依據(jù)直線l1:y1=x+b與直線l2:y2=x交于點C(2,2),即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論