版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,反比例函數(shù)(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為()A.1 B.2 C.3 D.42.3的倒數(shù)是()A. B. C. D.3.在數(shù)軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.4.1cm2的電子屏上約有細菌135000個,135000用科學記數(shù)法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1035.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學記數(shù)法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣66.下列圖形是中心對稱圖形的是()A. B. C. D.7.如圖,點A、B、C在圓O上,若∠OBC=40°,則∠A的度數(shù)為()A.40° B.45° C.50° D.55°8.2018年1月份,菏澤市市區(qū)一周空氣質量報告中某項污染指數(shù)的數(shù)據(jù)是41,45,41,44,40,42,41,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.42,41 B.41,42 C.41,41 D.42,459.直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)10.已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是()A.8B.9C.10D.11二、填空題(共7小題,每小題3分,滿分21分)11.如圖,AB是⊙O的直徑,AC與⊙O相切于點A,連接OC交⊙O于D,連接BD,若∠C=40°,則∠B=_____度.12.如圖,在△ABC中,AD、BE分別是BC、AC兩邊中線,則=_____.13.若y=,則x+y=.14.若關于x的一元二次方程kx2+2(k+1)x+k-1=0有兩個實數(shù)根,則k的取值范圍是15.在日本核電站事故期間,我國某監(jiān)測點監(jiān)測到極微量的人工放射性核素碘﹣131,其濃度為0.0000872貝克/立方米.數(shù)據(jù)“0.0000872”用科學記數(shù)法可表示為________.16.因式分解.17.不等式>4﹣x的解集為_____.三、解答題(共7小題,滿分69分)18.(10分)閱讀(1)閱讀理解:如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關系即可判斷.中線AD的取值范圍是________;(2)問題解決:如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;(3)問題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E,F(xiàn)兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.19.(5分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.(1)求證:AC是△BDE的外接圓的切線;(2)若AD=23,AE=6,求EC的長.20.(8分)如圖,在△ABC中,∠ABC=90°,BD⊥AC,垂足為D,E為BC邊上一動點(不與B、C重合),AE、BD交于點F.(1)當AE平分∠BAC時,求證:∠BEF=∠BFE;(2)當E運動到BC中點時,若BE=2,BD=2.4,AC=5,求AB的長.21.(10分)經(jīng)過校園某路口的行人,可能左轉,也可能直行或右轉.假設這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.22.(10分)菱形的邊長為5,兩條對角線、相交于點,且,的長分別是關于的方程的兩根,求的值.23.(12分)某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有多少人?24.(14分)某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.請結合以上信息解答下列問題:m=;請補全上面的條形統(tǒng)計圖;在圖2中,“乒乓球”所對應扇形的圓心角的度數(shù)為;已知該校共有1200名學生,請你估計該校約有名學生最喜愛足球活動.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
本題可從反比例函數(shù)圖象上的點E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關系,列出等式求出k值.【詳解】由題意得:E、M、D位于反比例函數(shù)圖象上,則,過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S□ONMG=|k|.又∵M為矩形ABCO對角線的交點,∴S矩形ABCO=4S□ONMG=4|k|,∵函數(shù)圖象在第一象限,k>0,∴.解得:k=1.故選C.【點睛】本題考查反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點分別向兩條坐標軸作垂線,與坐標軸圍成的矩形面積就等于|k|,本知識點是中考的重要考點,同學們應高度關注.2、C【解析】根據(jù)倒數(shù)的定義可知.解:3的倒數(shù)是.主要考查倒數(shù)的定義,要求熟練掌握.需要注意的是:倒數(shù)的性質:負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).3、A【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數(shù)化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.4、B【解析】
根據(jù)科學記數(shù)法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數(shù),確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同;當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù)).【詳解】解:135000用科學記數(shù)法表示為:1.35×1.故選B.【點睛】科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、D【解析】
根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).【詳解】解:0.0000025第一個有效數(shù)字前有6個0(含小數(shù)點前的1個0),從而.故選D.6、B【解析】
根據(jù)中心對稱圖形的概念,軸對稱圖形與中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合,即可解題.A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.考點:中心對稱圖形.【詳解】請在此輸入詳解!7、C【解析】
根據(jù)等腰三角形的性質和三角形內角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【詳解】∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=12【點睛】考查了圓周角定理.在同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半.8、C【解析】
找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個.【詳解】從小到大排列此數(shù)據(jù)為:40,1,1,1,42,44,45,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.【點睛】考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).9、C【解析】
作點D關于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點坐標為A(﹣6,0)和點B(0,4),因點C、D分別為線段AB、OB的中點,可得點C(﹣3,1),點D(0,1).再由點D′和點D關于x軸對稱,可知點D′的坐標為(0,﹣1).設直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點P的坐標為(﹣,0).故答案選C.考點:一次函數(shù)圖象上點的坐標特征;軸對稱-最短路線問題.10、C【解析】試題分析:已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是360÷36=10,故選C.考點:多邊形的內角和外角.二、填空題(共7小題,每小題3分,滿分21分)11、25【解析】∵AC是⊙O的切線,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案為:25.12、【解析】
利用三角形中位線的性質定理以及相似三角形的性質即可解決問題;【詳解】∵AE=EC,BD=CD,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴=,故答案是:.【點睛】考查相似三角形的判定和性質、三角形中位線定理等知識,解題的關鍵是熟練掌握三角形中位線定理.13、1.【解析】試題解析:∵原二次根式有意義,∴x-3≥0,3-x≥0,∴x=3,y=4,∴x+y=1.考點:二次根式有意義的條件.14、k≥-1【解析】試題解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-13∵原方程是一元二次方程,∴k≠1.考點:根的判別式.15、【解析】
科學記數(shù)法的表示形式為ax10n的形式,其中1≤lal<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:0.0000872=故答案為:【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.16、【解析】試題分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.17、x>1.【解析】
按照去分母、去括號、移項、合并同類項、系數(shù)化為1的步驟求解即可.【詳解】解:去分母得:x﹣1>8﹣2x,移項合并得:3x>12,解得:x>1,故答案為:x>1【點睛】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關鍵.三、解答題(共7小題,滿分69分)18、(1)2<AD<8;(2)證明見解析;(3)BE+DF=EF;理由見解析.【解析】試題分析:(1)延長AD至E,使DE=AD,由SAS證明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三邊關系求出AE的取值范圍,即可得出AD的取值范圍;(2)延長FD至點M,使DM=DF,連接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由線段垂直平分線的性質得出EM=EF,在△BME中,由三角形的三邊關系得出BE+BM>EM即可得出結論;(3)延長AB至點N,使BN=DF,連接CN,證出∠NBC=∠D,由SAS證明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,證出∠ECN=70°=∠ECF,再由SAS證明△NCE≌△FCE,得出EN=EF,即可得出結論.試題解析:(1)解:延長AD至E,使DE=AD,連接BE,如圖①所示:∵AD是BC邊上的中線,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三邊關系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案為2<AD<8;(2)證明:延長FD至點M,使DM=DF,連接BM、EM,如圖②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三邊關系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延長AB至點N,使BN=DF,連接CN,如圖3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,BN=DF,∠NBC=∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考點:全等三角形的判定和性質;三角形的三邊關系定理.19、(1)證明見解析;(2)1.【解析】試題分析:(1)取BD的中點0,連結OE,如圖,由∠BED=90°,根據(jù)圓周角定理可得BD為△BDE的外接圓的直徑,點O為△BDE的外接圓的圓心,再證明OE∥BC,得到∠AEO=∠C=90°,于是可根據(jù)切線的判定定理判斷AC是△BDE的外接圓的切線;(2)設⊙O的半徑為r,根據(jù)勾股定理得62+r2=(r+23)2,解得r=23,根據(jù)平行線分線段成比例定理,由OE∥BC得AECE試題解析:(1)證明:取BD的中點0,連結OE,如圖,∵DE⊥EB,∴∠BED=90°,∴BD為△BDE的外接圓的直徑,點O為△BDE的外接圓的圓心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圓的切線;(2)解:設⊙O的半徑為r,則OA=OD+DA=r+23,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+23)2,解得r=23,∵OE∥BC,∴AECE=AO∴CE=1.考點:1、切線的判定;2、勾股定理20、(1)證明見解析;(1)2【解析】分析:(1)根據(jù)角平分線的定義可得∠1=∠1,再根據(jù)等角的余角相等求出∠BEF=∠AFD,然后根據(jù)對頂角相等可得∠BFE=∠AFD,等量代換即可得解;(1)根據(jù)中點定義求出BC,利用勾股定理列式求出AB即可.詳解:(1)如圖,∵AE平分∠BAC,∴∠1=∠1.∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.∵∠BFE=∠AFD(對頂角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.點睛:本題考查了直角三角形的性質,勾股定理的應用,等角的余角相等的性質,熟記各性質并準確識圖是解題的關鍵.21、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結果數(shù),找出“至少有一人直行”的結果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結果數(shù),其中兩人之中至少有一人直行的結果數(shù)為5,所以兩人之中至少有一人直行的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數(shù)與總情況數(shù)之比.22、.【解析】
由題意可知:菱形ABCD的邊長是5,則AO2+BO2=25,則再根據(jù)根與系數(shù)的關系可得:AO+BO=?(2m?1),AO?BO=m2+3;代入AO2+BO2中,得到關于m的方程后,即可求得m的值.【詳解】解:∵,的長分別是關于的方程的兩根,設方程的兩根為和,可令,,∵四邊形是菱形,∴,在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版國有土地臨時用地合同3篇
- 二零二五版高級別別墅居住權購置與買賣合同3篇
- 醫(yī)院2025年度物流配送服務合同2篇
- 二零二五年度交通樞紐“四害”滅治與旅客健康服務合同3篇
- 二零二五版數(shù)字藝術版權保護與侵權處理合同范本3篇
- 二零二五版宅基地使用權轉讓及農(nóng)村土地流轉收益分配合同2篇
- 二零二五年戶外廣告牌場地租賃及新媒體營銷合同3篇
- 二零二五年投影機采購與燈光音響租賃服務合同3篇
- 二零二五版建筑工程項目招投標代理中介費合同3篇
- 二零二五版汽車零部件鈑金加工及機加服務采購合同模板3篇
- 青島版(五年制)四年級下冊小學數(shù)學全冊導學案(學前預習單)
- 退學費和解協(xié)議書模板
- 2024至2030年中國對氯甲苯行業(yè)市場全景調研及發(fā)展趨勢分析報告
- 智能教育輔助系統(tǒng)運營服務合同
- 心功能分級及護理
- DLT 572-2021 電力變壓器運行規(guī)程
- 重慶育才中學2025屆化學九上期末教學質量檢測試題含解析
- 成都市2022級(2025屆)高中畢業(yè)班摸底測試(零診)數(shù)學試卷(含答案)
- 【云南省中藥材出口現(xiàn)狀、問題及對策11000字(論文)】
- 服裝板房管理制度
- 河北省興隆縣盛嘉恒信礦業(yè)有限公司李杖子硅石礦礦山地質環(huán)境保護與治理恢復方案
評論
0/150
提交評論