




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若關(guān)于x的一元二次方程x2﹣2x+m=0沒有實數(shù)根,則實數(shù)m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣12.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B.C. D.3.下列計算錯誤的是()A.4x3?2x2=8x5B.a(chǎn)4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.如圖,在數(shù)軸上有點O,A,B,C對應(yīng)的數(shù)分別是0,a,b,c,AO=2,OB=1,BC=2,則下列結(jié)論正確的是()A. B. C. D.5.關(guān)于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(2,2); B.函數(shù)圖像位于第一、三象限;C.當(dāng)時,函數(shù)值隨著的增大而增大; D.當(dāng)時,.6.下列多邊形中,內(nèi)角和是一個三角形內(nèi)角和的4倍的是()A.四邊形B.五邊形C.六邊形D.八邊形7.某射擊選手10次射擊成績統(tǒng)計結(jié)果如下表,這10次成績的眾數(shù)、中位數(shù)分別是()成績(環(huán))78910次數(shù)1432A.8、8 B.8、8.5 C.8、9 D.8、108.某籃球運動員在連續(xù)7場比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分9.小麗只帶2元和5元的兩種面額的鈔票(數(shù)量足夠多),她要買27元的商品,而商店不找零錢,要她剛好付27元,她的付款方式有()種.A.1 B.2 C.3 D.410.的負(fù)倒數(shù)是()A. B.- C.3 D.﹣3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,以原點O為圓心的圓交X軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=20°,則∠OCD=.12.分解因式:x2y﹣4xy+4y=_____.13.如圖,將△AOB繞點按逆時針方向旋轉(zhuǎn)后得到,若,則的度數(shù)是_______.14.△ABC中,∠A、∠B都是銳角,若sinA=,cosB=,則∠C=_____.15.如圖,△ABC的兩條高AD,BE相交于點F,請?zhí)砑右粋€條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是_____.16.下面是“利用直角三角形作矩形”尺規(guī)作圖的過程.已知:如圖1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如圖2,(1)分別以點A、C為圓心,大于AC同樣長為半徑作弧,兩弧交于點E、F;(2)作直線EF,直線EF交AC于點O;(3)作射線BO,在BO上截取OD,使得OD=OB;(4)連接AD,CD.∴四邊形ABCD就是所求作的矩形.老師說,“小明的作法正確.”請回答,小明作圖的依據(jù)是:__________________________________________________.17.如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).(1)求點B的坐標(biāo);(2)求經(jīng)過A、O、B三點的拋物線的函數(shù)表達式;(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標(biāo);若不存在,請說明理由.19.(5分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標(biāo)為1.當(dāng)m=1,n=20時.①若點P的縱坐標(biāo)為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.20.(8分)小王是“新星廠”的一名工人,請你閱讀下列信息:信息一:工人工作時間:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時間的關(guān)系見下表:生產(chǎn)甲產(chǎn)品數(shù)(件)生產(chǎn)乙產(chǎn)品數(shù)(件)所用時間(分鐘)10103503020850信息三:按件計酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元.信息四:該廠工人每月收入由底薪和計酬工資兩部分構(gòu)成,小王每月的底薪為1900元,請根據(jù)以上信息,解答下列問題:(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分鐘;(2)2018年1月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?21.(10分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.求口袋中黃球的個數(shù);甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;22.(10分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.若△OCP與△PDA的面積比為1:4,求邊CD的長.如圖2,在(Ⅰ)的條件下,擦去折痕AO、線段OP,連接BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問當(dāng)動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若變化,說明變化規(guī)律.若不變,求出線段EF的長度.23.(12分)如圖所示,某校九年級(3)班的一個學(xué)習(xí)小組進行測量小山高度的實踐活動.部分同學(xué)在山腳A點處測得山腰上一點D的仰角為30°,并測得AD的長度為180米.另一部分同學(xué)在山頂B點處測得山腳A點的俯角為45°,山腰D點的俯角為60°,請你幫助他們計算出小山的高度BC.(計算過程和結(jié)果都不取近似值)24.(14分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對應(yīng)邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對應(yīng)邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經(jīng)過的路程為s.當(dāng)β=45°時,若△APQ是“中邊三角形”,試求的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題解析:關(guān)于的一元二次方程沒有實數(shù)根,,解得:故選C.2、A【解析】
畫出從正面看到的圖形即可得到它的主視圖.【詳解】這個幾何體的主視圖為:故選:A.【點睛】本題考查了簡單組合體的三視圖:畫簡單組合體的三視圖要循序漸進,通過仔細(xì)觀察和想象,再畫它的三視圖.3、B【解析】
根據(jù)單項式與單項式相乘,把他們的系數(shù),相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式;合并同類項的法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧記為:“首平方,末平方,首末兩倍中間放”可得答案.【詳解】A選項:4x3?1x1=8x5,故原題計算正確;
B選項:a4和a3不是同類項,不能合并,故原題計算錯誤;
C選項:(-x1)5=-x10,故原題計算正確;
D選項:(a-b)1=a1-1ab+b1,故原題計算正確;
故選:B.【點睛】考查了整式的乘法,關(guān)鍵是掌握整式的乘法各計算法則.4、C【解析】
根據(jù)AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,進行判斷即可解答.【詳解】解:∵AO=2,OB=1,BC=2,∴a=-2,b=1,c=3,∴|a|≠|(zhì)c|,ab<0,,,故選:C.【點睛】此題考查有理數(shù)的大小比較以及絕對值,解題的關(guān)鍵結(jié)合數(shù)軸求解.5、C【解析】
直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【詳解】A、關(guān)于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(2,-2),故此選項錯誤;B、關(guān)于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項錯誤;C、關(guān)于反比例函數(shù)y=-,當(dāng)x>0時,函數(shù)值y隨著x的增大而增大,故此選項正確;D、關(guān)于反比例函數(shù)y=-,當(dāng)x>1時,y>-4,故此選項錯誤;故選C.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關(guān)函數(shù)的性質(zhì)是解題關(guān)鍵.6、C【解析】
利用多邊形的內(nèi)角和公式列方程求解即可【詳解】設(shè)這個多邊形的邊數(shù)為n.由題意得:(n﹣2)×180°=4×180°.解得:n=1.答:這個多邊形的邊數(shù)為1.故選C.【點睛】本題主要考查的是多邊形的內(nèi)角和公式,掌握多邊形的內(nèi)角和公式是解題的關(guān)鍵.7、B【解析】
根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】由表可知,8環(huán)出現(xiàn)次數(shù)最多,有4次,所以眾數(shù)為8環(huán);這10個數(shù)據(jù)的中位數(shù)為第5、6個數(shù)據(jù)的平均數(shù),即中位數(shù)為=8.5(環(huán)),故選:B.【點睛】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).8、D【解析】分析:根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).詳解:將數(shù)據(jù)重新排列為17、18、18、20、20、20、23,所以這組數(shù)據(jù)的眾數(shù)為20分、中位數(shù)為20分,故選:D.點睛:本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).9、C【解析】分析:先根據(jù)題意列出二元一次方程,再根據(jù)x,y都是非負(fù)整數(shù)可求得x,y的值.詳解:解:設(shè)2元的共有x張,5元的共有y張,由題意,2x+5y=27∴x=(27-5y)∵x,y是非負(fù)整數(shù),∴或或,∴付款的方式共有3種.故選C.點睛:本題考查二元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再根據(jù)實際意義求解.10、D【解析】
根據(jù)倒數(shù)的定義,互為倒數(shù)的兩數(shù)乘積為1,2×=1.再求出2的相反數(shù)即可解答.【詳解】根據(jù)倒數(shù)的定義得:2×=1.
因此的負(fù)倒數(shù)是-2.
故選D.【點睛】本題考查了倒數(shù),解題的關(guān)鍵是掌握倒數(shù)的概念.二、填空題(共7小題,每小題3分,滿分21分)11、65°【解析】
解:由題意分析之,得出弧BD對應(yīng)的圓周角是∠DAB,所以,=40°,由此則有:∠OCD=65°考點:本題考查了圓周角和圓心角的關(guān)系點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要對圓心角、弧、弦等的基本性質(zhì)要熟練把握12、y(x-2)2【解析】
先提取公因式y(tǒng),再根據(jù)完全平方公式分解即可得.【詳解】原式==,故答案為.13、60°【解析】
根據(jù)題意可得,根據(jù)已知條件計算即可.【詳解】根據(jù)題意可得:,故答案為60°【點睛】本題主要考查旋轉(zhuǎn)角的有關(guān)計算,關(guān)鍵在于識別那個是旋轉(zhuǎn)角.14、60°.【解析】
先根據(jù)特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),再根據(jù)三角形內(nèi)角和定理求出∠C即可作出判斷.【詳解】∵△ABC中,∠A、∠B都是銳角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案為60°.【點睛】本題考查的是特殊角的三角函數(shù)值及三角形內(nèi)角和定理,比較簡單.15、AC=BC.【解析】分析:添加AC=BC,根據(jù)三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.詳解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案為:AC=BC.點睛:此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.16、到線段兩端點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個角為90°的平行四邊形為矩形【解析】
先利用作法判定OA=OC,OD=OB,則根據(jù)平行四邊形的判定方法判斷四邊形ABCD為平行四邊形,然后根據(jù)矩形的判定方法判斷四邊形ABCD為矩形.【詳解】解:由作法得EF垂直平分AC,則OA=OC,而OD=OB,所以四邊形ABCD為平行四邊形,而∠ABC=90°,所以四邊形ABCD為矩形.故答案為到線段兩段點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個內(nèi)角為90°的平行四邊形為矩形.【點睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.17、【解析】
設(shè)⊙O半徑為r,根據(jù)勾股定理列方程求出半徑r,由勾股定理依次求BE和EC的長.【詳解】連接BE,設(shè)⊙O半徑為r,則OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC=AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE為⊙O的直徑,
∴∠ABE=90°,
由勾股定理得:BE=6,
在Rt△ECB中,EC=.故答案是:.【點睛】考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)B(-1.2);(2)y=;(3)見解析.【解析】
(1)過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,則可證明△ACO≌△ODB,則可求得OD和BD的長,可求得B點坐標(biāo);(2)根據(jù)A、B、O三點的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(3)由四邊形ABOP可知點P在線段AO的下方,過P作PE∥y軸交線段OA于點E,可求得直線OA解析式,設(shè)出P點坐標(biāo),則可表示出E點坐標(biāo),可表示出PE的長,進一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時P點的坐標(biāo).【詳解】(1)如圖1,過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過O點,∴可設(shè)拋物線解析式為y=ax2+bx,把A、B兩點坐標(biāo)代入可得,解得,∴經(jīng)過A、B、O原點的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點P在線段OA的下方,過P作PE∥y軸交AO于點E,如圖2,設(shè)直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設(shè)P點坐標(biāo)為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO?BO=,∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴當(dāng)t=1時,四邊形ABOP的面積最大,此時P點坐標(biāo)為(1,-),綜上可知存在使四邊形ABOP的面積最大的點P,其坐標(biāo)為(1,-).【點睛】本題為二次函數(shù)的綜合應(yīng)用,主要涉及待定系數(shù)法、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、三角形的面積以及方程思想等知識.在(1)中構(gòu)造三角形全等是解題的關(guān)鍵,在(2)中注意待定系數(shù)法的應(yīng)用,在(3)中用t表示出四邊形ABOP的面積是解題的關(guān)鍵.本題考查知識點較多,綜合性較強,難度適中.19、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解析】
(1)①先確定出點A,B坐標(biāo),再利用待定系數(shù)法即可得出結(jié)論;
②先確定出點D坐標(biāo),進而確定出點P坐標(biāo),進而求出PA,PC,即可得出結(jié)論;
(2)先確定出B(1,),D(1,),進而求出點P的坐標(biāo),再求出A,C坐標(biāo),最后用AC=BD,即可得出結(jié)論.【詳解】(1)①如圖1,,反比例函數(shù)為,當(dāng)時,,,當(dāng)時,,,,設(shè)直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點是線段的中點,,當(dāng)時,由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當(dāng)四邊形是正方形,記,的交點為,,當(dāng)時,,,,,,,,,,.【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.20、(1)生產(chǎn)一件甲產(chǎn)品需要15分,生產(chǎn)一件乙產(chǎn)品需要20分;(2)小王該月最多能得3544元,此時生產(chǎn)甲、乙兩種產(chǎn)品分別60,555件.【解析】
(1)設(shè)生產(chǎn)一件甲種產(chǎn)品需x分,生產(chǎn)一件乙種產(chǎn)品需y分,利用待定系數(shù)法求出x,y的值.
(2)設(shè)生產(chǎn)甲種產(chǎn)品用x分,則生產(chǎn)乙種產(chǎn)品用(25×8×60-x)分,分別求出甲乙兩種生產(chǎn)多少件產(chǎn)品.【詳解】(1)設(shè)生產(chǎn)一件甲種產(chǎn)品需x分,生產(chǎn)一件乙種產(chǎn)品需y分.由題意得:,解這個方程組得:,答:生產(chǎn)一件甲產(chǎn)品需要15分,生產(chǎn)一件乙產(chǎn)品需要20分.(2)設(shè)生產(chǎn)甲種產(chǎn)品共用x分,則生產(chǎn)乙種產(chǎn)品用(25×8×60-x)分.則生產(chǎn)甲種產(chǎn)品件,生產(chǎn)乙種產(chǎn)品件.∴w總額=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,又≥60,得x≥900,由一次函數(shù)的增減性,當(dāng)x=900時w取得最大值,此時w=0.04×900+1680=1644(元),則小王該月收入最多是1644+1900=3544(元),此時甲有=60(件),乙有:=555(件),答:小王該月最多能得3544元,此時生產(chǎn)甲、乙兩種產(chǎn)品分別60,555件.【點睛】考查了一次函數(shù)和二元一次方程組的應(yīng)用.解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程組,再求解.21、(1)1;(2)【解析】
(1)設(shè)口袋中黃球的個數(shù)為x個,根據(jù)從中任意摸出一個球是紅球的概率為和概率公式列出方程,解方程即可求得答案;(2)根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案;【詳解】解:(1)設(shè)口袋中黃球的個數(shù)為個,根據(jù)題意得:解得:=1經(jīng)檢驗:=1是原分式方程的解∴口袋中黃球的個數(shù)為1個(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次摸出都是紅球的有2種情況∴兩次摸出都是紅球的概率為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.22、(1)10;(2).【解析】
(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=AD=4,設(shè)OP=x,則CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根據(jù)AB=2OP即可求出邊AB的長;(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結(jié)論求出PB=,最后代入EF=PB即可得出線段EF的長度不變【詳解】(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴,∴CP=AD=4設(shè)OP=x,則CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴邊CD的長為10;(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的條件下,當(dāng)點M、N在移動過程中,線段EF的長度不變,它的長度為2.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、等腰三角形的性質(zhì),關(guān)鍵是做出輔助線,找出全等和相似的三角形23、米【解析】
解:如圖,過點D作DE⊥AC于點E,作DF⊥BC于點F,則有DE∥FC,DF∥EC.∵∠DEC=90°,∴四邊形DECF是矩形,∴DE=FC.∵∠HBA=∠BAC=4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高質(zhì)量教育的內(nèi)涵與外延拓展
- 基于影視產(chǎn)業(yè)的區(qū)域經(jīng)濟協(xié)作網(wǎng)絡(luò)建設(shè)
- 智慧課堂的實現(xiàn)與優(yōu)化
- 2025年物業(yè)轉(zhuǎn)讓合同(含擔(dān)保條款)
- 2025年玻璃浮球項目提案報告模板
- 二型糖尿病的護理措施
- 2025年海洋環(huán)保儀器及采樣設(shè)備項目規(guī)劃申請報告
- 2025至2030年中國家電外殼行業(yè)投資前景及策略咨詢報告
- 2025至2030年中國塑料卷發(fā)器行業(yè)投資前景及策略咨詢報告
- 2025至2030年中國雙層搖粒絨整掌手套行業(yè)投資前景及策略咨詢報告
- 景區(qū)劇場演藝策劃方案
- 可用性工程報告 - 醫(yī)療器械
- 導(dǎo)演聘用合同范本(全新完整版)
- 中國城市區(qū)域劃分表(超實用)
- PCBA審核表實用模板
- 商家和客戶的協(xié)議書
- 研學(xué)旅行PPT模板
- 安徽蕪湖歷年中考語文文言文閱讀試題8篇(含答案與翻譯)(截至2020年)
- 四人合伙協(xié)議書范本 四人合伙經(jīng)營協(xié)議書模板
- 辦公室衛(wèi)生值日表
- 軟件開發(fā)項目工作量及報價模板
評論
0/150
提交評論