




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在代數(shù)式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠02.下列圖形中,既是中心對稱,又是軸對稱的是()A. B. C. D.3.實數(shù)a在數(shù)軸上的位置如圖所示,則下列說法不正確的是()A.a(chǎn)的相反數(shù)大于2B.a(chǎn)的相反數(shù)是2C.|a|>2D.2a<04.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.5.將拋物線向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為()A. B. C. D.6.如圖所示,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于()A.25:24 B.16:15 C.5:4 D.4:37.已知關(guān)于x的一元二次方程mx2+2x-1=0有兩個不相等的實數(shù)根,則m的取值范圍是().A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>18.某一超市在“五?一”期間開展有獎促銷活動,每買100元商品可參加抽獎一次,中獎的概率為.小張這期間在該超市買商品獲得了三次抽獎機(jī)會,則小張()A.能中獎一次 B.能中獎兩次C.至少能中獎一次 D.中獎次數(shù)不能確定9.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣310.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或1二、填空題(共7小題,每小題3分,滿分21分)11.使得分式值為零的x的值是_________;12.化簡:=____.13.關(guān)于x的方程ax=x+2(a1)的解是________.14.若點M(1,m)和點N(4,n)在直線y=﹣x+b上,則m___n(填>、<或=)15.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.16.已知一個多邊形的每一個內(nèi)角都等于108°,則這個多邊形的邊數(shù)是.17.若m﹣n=4,則2m2﹣4mn+2n2的值為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知CD=CF,∠A=∠E=∠DCF=90°,求證:AD+EF=AE19.(5分)如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當(dāng)秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當(dāng)他從A處擺動到A′處時,有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.20.(8分)先化簡,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.21.(10分)計算:÷+8×2﹣1﹣(+1)0+2?sin60°.22.(10分)如圖,已知A(3,0),B(0,﹣1),連接AB,過B點作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點坐標(biāo);如圖2,若P點從A點出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當(dāng)點P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點共線,求此時∠APB的度數(shù)及P點坐標(biāo).23.(12分)海中有一個小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達(dá)B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.24.(14分)為了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學(xué)參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進(jìn)行調(diào)查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.
(1)參加音樂類活動的學(xué)生人數(shù)為
人,參加球類活動的人數(shù)的百分比為
(2)請把圖2(條形統(tǒng)計圖)補(bǔ)充完整;
(3)該校學(xué)生共600人,則參加棋類活動的人數(shù)約為.
(4)該班參加舞蹈類活動的4位同學(xué)中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點睛】本題考查二次根式有意義的條件,解題的關(guān)鍵是熟練運(yùn)用二次根式有意義的條件,本題屬于基礎(chǔ)題型.2、C【解析】
根據(jù)中心對稱圖形,軸對稱圖形的定義進(jìn)行判斷.【詳解】A、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形,軸對稱圖形的判斷.關(guān)鍵是根據(jù)圖形自身的對稱性進(jìn)行判斷.3、B【解析】試題分析:由數(shù)軸可知,a<-2,A、a的相反數(shù)>2,故本選項正確,不符合題意;B、a的相反數(shù)≠2,故本選項錯誤,符合題意;C、a的絕對值>2,故本選項正確,不符合題意;D、2a<0,故本選項正確,不符合題意.故選B.考點:實數(shù)與數(shù)軸.4、A【解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內(nèi)切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.5、D【解析】根據(jù)“左加右減、上加下減”的原則,將拋物線向左平移1個單位所得直線解析式為:;再向下平移3個單位為:.故選D.6、A【解析】
先根據(jù)圖形翻折的性質(zhì)可得到四邊形EFGH是矩形,再根據(jù)全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.【詳解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四邊形EFGH的其它內(nèi)角都是90°,∴四邊形EFGH是矩形,∴EH=FG(矩形的對邊相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代換),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根據(jù)勾股定理得HF==5,又∵HE?EF=HF?EM,∴EM=,又∵AE=EM=EB(折疊后A、B都落在M點上),∴AB=2EM=,∴AD:AB=5:==25:1.故選A【點睛】本題考查的是圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,折疊以后的圖形與原圖形全等.7、A【解析】
∵一元二次方程mx2+2x-1=0有兩個不相等的實數(shù)根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故選A.【點睛】本題考查一元二次方程ax2+bx+c=0(a≠0)根的判別式:(1)當(dāng)△=b2﹣4ac>0時,方程有兩個不相等的實數(shù)根;(2)當(dāng)△=b2﹣4ac=0時,方程有有兩個相等的實數(shù)根;(3)當(dāng)△=b2﹣4ac<0時,方程沒有實數(shù)根.8、D【解析】
由于中獎概率為,說明此事件為隨機(jī)事件,即可能發(fā)生,也可能不發(fā)生.【詳解】解:根據(jù)隨機(jī)事件的定義判定,中獎次數(shù)不能確定故選D.【點睛】解答此題要明確概率和事件的關(guān)系:,為不可能事件;為必然事件;為隨機(jī)事件.9、B【解析】
先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點睛】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關(guān)鍵.10、D【解析】
當(dāng)k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當(dāng)k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當(dāng)k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當(dāng)k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關(guān)鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】
根據(jù)分式的性質(zhì),要使分式有意義,則必須分母不能為0,要使分式為零,則只有分子為0,因此計算即可.【詳解】解:要使分式有意義則,即要使分式為零,則,即綜上可得故答案為2【點睛】本題主要考查分式的性質(zhì),關(guān)鍵在于分式的分母不能為0.12、【解析】
先利用除法法則變形,約分后通分并利用同分母分式的減法法則計算即可.【詳解】原式,
故答案為【點睛】本題考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則是解題的關(guān)鍵.13、【解析】分析:依據(jù)等式的基本性質(zhì)依次移項、合并同類項、系數(shù)化為1即可得出答案.詳解:移項,得:ax﹣x=1,合并同類項,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程兩邊都除以a﹣1,得:x=.故答案為x=.點睛:本題主要考查解一元一次方程的能力,熟練掌握等式的基本性質(zhì)及解一元一次方程的基本步驟是解題的關(guān)鍵.14、>【解析】
根據(jù)一次函數(shù)的性質(zhì),k<0時,y隨x的增大而減小.【詳解】因為k=﹣<0,所以函數(shù)值y隨x的增大而減小,因為1<4,所以,m>n.故答案為:>【點睛】本題考核知識點:一次函數(shù).解題關(guān)鍵點:熟記一次函數(shù)的性質(zhì).15、22.5°【解析】
四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質(zhì);等腰三角形的性質(zhì).16、1【解析】試題分析:∵多邊形的每一個內(nèi)角都等于108°,∴每一個外角為72°.∵多邊形的外角和為360°,∴這個多邊形的邊數(shù)是:360÷÷72=1.17、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當(dāng)m﹣n=4時,原式=2×42=1.故答案為:1.三、解答題(共7小題,滿分69分)18、證明見解析.【解析】
易證△DAC≌△CEF,即可得證.【詳解】證明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,∴∠DCA=∠CFE,在△DAC和△CEF中:,∴△DAC≌△CEF(AAS),∴AD=CE,AC=EF,∴AE=AD+EF【點睛】此題主要考查全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟知全等三角形的判定與性質(zhì).19、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】
(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質(zhì)即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長,即可得A'F的長,從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據(jù)A'H=BD﹣BF求得A'H的長,從而求得A'到地面的距離.【詳解】(1)如圖2,作A'F⊥BD,垂足為F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距離是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足為H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距離是1m.【點睛】本題考查了全等三角形的判定與性質(zhì)的應(yīng)用,作出輔助線,證明△ACB≌△BFA'是解決問題的關(guān)鍵.20、(x﹣y)2;2.【解析】
首先利用多項式的乘法法則以及多項式與單項式的除法法則計算,然后合并同類項即可化簡,然后代入數(shù)值計算即可.【詳解】原式=x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,當(dāng)x=2028,y=2時,原式=(2028﹣2)2=(﹣2)2=2.【點睛】本題考查的是整式的混合運(yùn)算,正確利用多項式的乘法法則以及合并同類項法則是解題的關(guān)鍵.21、6+.【解析】
利用負(fù)整數(shù)指數(shù)冪、零指數(shù)冪的意義和特殊角的三角函數(shù)值進(jìn)行計算.【詳解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【點睛】本題考查了二次根式的混合運(yùn)算:先把各二次根式化簡為最簡二次根式,然后進(jìn)行二次根式的乘除運(yùn)算,再合并即可.在二次根式的混合運(yùn)算中,如能結(jié)合題目特點,靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.22、(1)C(1,-4).(2)證明見解析;(3)∠APB=135°,P(1,0).【解析】
(1)作CH⊥y軸于H,證明△ABO≌△BCH,根據(jù)全等三角形的性質(zhì)得到BH=OA=3,CH=OB=1,求出OH,得到C點坐標(biāo);(2)證明△PBA≌△QBC,根據(jù)全等三角形的性質(zhì)得到PA=CQ;(3)根據(jù)C、P,Q三點共線,得到∠BQC=135°,根據(jù)全等三角形的性質(zhì)得到∠BPA=∠BQC=135°,根據(jù)等腰三角形的性質(zhì)求出OP,得到P點坐標(biāo).【詳解】(1)作CH⊥y軸于H,則∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C點坐標(biāo)為(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,當(dāng)C、P,Q三點共線時,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P點坐標(biāo)為(1,0).【點睛】本題考查的是全等三角形的判定和性質(zhì)、三角形的外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.23、有觸礁危險,理由見解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZSA 271-2024 高強(qiáng)度高彈性高導(dǎo)電率鈦銅合金
- 二零二五年度私募股權(quán)基金股權(quán)轉(zhuǎn)讓及代持管理協(xié)議
- 二零二五年度農(nóng)副產(chǎn)品電商平臺用戶增長合作合同
- 二零二五年度體育場館委托代理出租服務(wù)合同
- 二零二五年度海洋工程電焊工勞動合同(海洋平臺焊接)
- 二零二五年度臨時工兼職合同
- 二零二五年度全屋定制家居裝修合同
- 二零二五年度科研實驗室租賃合同轉(zhuǎn)讓及設(shè)備維護(hù)協(xié)議
- 二零二五年度音樂節(jié)現(xiàn)場安全員聘請合同
- 二零二五年度鄉(xiāng)村民宿房東與游客租賃合同
- 肺部感染臨床路徑
- 電商平臺定價策略優(yōu)化
- 人美版美術(shù) 二年級下冊全冊教學(xué)設(shè)計(表格式)
- 保險經(jīng)紀(jì)人考試題庫含答案
- 2024-2030年中國骨傳導(dǎo)耳機(jī)行業(yè)銷售渠道及供需前景預(yù)測報告
- 2024年導(dǎo)游服務(wù)技能大賽《導(dǎo)游綜合知識測試》題庫及答案
- 專項訓(xùn)練-解決問題訓(xùn)練(專項訓(xùn)練) 六年級下冊數(shù)學(xué)人教版
- 心肺復(fù)蘇技能操作考核表
- SHT 3060-2013 石油化工企業(yè)供電系統(tǒng)設(shè)計規(guī)范
- 2024年俄羅斯高空作業(yè)平臺車行業(yè)應(yīng)用與市場潛力評估
- 蕪湖2024年安徽蕪湖傳媒中心招聘編外工作人員5人筆試歷年典型考題及考點附答案解析
評論
0/150
提交評論