




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022學(xué)年北京市豐臺區(qū)高一(上)期末數(shù)學(xué)試卷試題數(shù):21,總分:1501.(單選題,4分)已知函數(shù),那么f(-1)=()A.-2B.-1C.D.22.(單選題,4分)已知集合A∪B={0,1,2,3,4},B={1,2,4},那么集合A可能是()A.{1,2,3}B.{0,1,4}C.{0,1,3}D.{1,3,4}3.(單選題,4分)已知a,b,c∈R,a>b,那么下列結(jié)論成立的是()A.a2>b2B.C.ac>bcD.a-c>b-c4.(單選題,4分)下列函數(shù)中,圖象關(guān)于坐標(biāo)原點對稱的是()A.B.y=x3C.y=|x|D.y=2x5.(單選題,4分)下列函數(shù)中,最小正周期為的是()A.y=cosxB.y=tanxC.y=cos2xD.y=tan2x6.(單選題,4分)已知a>0,那么的最小值是()A.B.C.D.7.(單選題,4分)已知函數(shù),那么“a=0”是“函數(shù)f(x)是增函數(shù)”的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件8.(單選題,4分)盡管目前人類還無法準(zhǔn)確預(yù)報地震,但科學(xué)研究表明,地震時釋放出的能量E(單位:焦耳)與地震里氏震級M之間的關(guān)系為lgE=4.8+1.5M.已知兩次地震的能量與里氏震級分別為Ei與Mi(i=1,2),若M2-M1=2,則=()A.103B.3C.lg3D.10-39.(單選題,4分)在特定條件下,籃球賽中進(jìn)攻球員投球后,籃球的運(yùn)行軌跡是開口向下的拋物線的一部分.“蓋帽”是一種常見的防守手段,防守隊員在籃球上升階段將球攔截即為“蓋帽”,而防守隊員在籃球下降階段將球攔截則屬“違規(guī)”.對于某次投籃而言,如果忽略其他因素的影響,籃球處于上升階段的水平距離越長,則被“蓋帽”的可能性越大.
收集幾次籃球比賽的數(shù)據(jù)之后,某球員投籃可以簡化為下述數(shù)學(xué)模型:如圖所示,該球員的投籃出手點為P,籃框中心點為Q,他可以選擇讓籃球在運(yùn)行途中經(jīng)過A,B,C,D四個點中的某一點并命中Q,忽略其他因素的影響,那么被“蓋帽”的可能性最大的線路是()A.P→A→QB.P→B→QC.P→C→QD.P→D→Q10.(單選題,4分)將函數(shù)f(x)的圖象向右平移φ(φ>0)個單位長度,得到函數(shù)的圖象.若x=0是函數(shù)F(x)=f(x)-g(x)的一個零點,則φ的最小值是()A.B.C.D.11.(填空題,5分)已知冪函數(shù)y=xα的圖象經(jīng)過點(2,8),那么α=___.12.(填空題,5分)在平面直角坐標(biāo)系xOy中,角α與角β均以x軸的非負(fù)半軸為始邊,它們的終邊關(guān)于坐標(biāo)原點對稱.若,則sinβ=___.13.(填空題,5分)已知命題“?x∈R,ex≥a”是真命題,那么實數(shù)a的取值范圍是___.14.(填空題,5分)函數(shù)f(x)=cos2x-2cosx+1的最小值是___.15.(填空題,5分)中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術(shù).現(xiàn)有兩名剪紙藝人創(chuàng)作甲、乙兩種作品,他們在一天中的工作情況如圖所示,其中點Ai的橫、縱坐標(biāo)分別為第i名藝人上午創(chuàng)作的甲作品數(shù)和乙作品數(shù),點Bi的橫、縱坐標(biāo)分別為第i名藝人下午創(chuàng)作的甲作品數(shù)和乙作品數(shù),i=1,2.給出下列四個結(jié)論:
①該天上午第1名藝人創(chuàng)作的甲作品數(shù)比乙作品數(shù)少;
②該天下午第1名藝人創(chuàng)作的乙作品數(shù)比第2名藝人創(chuàng)作的乙作品數(shù)少;
③該天第1名藝人創(chuàng)作的作品總數(shù)比第2名藝人創(chuàng)作的作品總數(shù)少;
④該天第2名藝人創(chuàng)作的作品總數(shù)比第1名藝人創(chuàng)作的作品總數(shù)少.
其中所有正確結(jié)論的序號是___.16.(問答題,13分)已知不等式x2+ax+b<0(a,b∈R)的解集A={x|-1<x<2}.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若集合B={x|x<0},求A∩B,A∪(?RB).17.(問答題,14分)已知,且α是第二象限角.
(Ⅰ)求sinα的值;
(Ⅱ)求的值.18.(問答題,14分)已知函數(shù)f(x)=lg(1+x)+lg(1-x).
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并證明;
(Ⅲ)判斷函數(shù)f(x)在區(qū)間(0,1)上的單調(diào)性,并用定義證明.19.(問答題,14分)一種專門占據(jù)內(nèi)存的計算機(jī)病毒,能在短時間內(nèi)感染大量文件,使每個文件都不同程度地加長,造成磁盤空間的嚴(yán)重浪費(fèi).這種病毒開機(jī)時占據(jù)內(nèi)存2KB,每3分鐘后病毒所占內(nèi)存是原來的2倍.記x分鐘后的病毒所占內(nèi)存為yKB.
(Ⅰ)求y關(guān)于x的函數(shù)解析式;
(Ⅱ)如果病毒占據(jù)內(nèi)存不超過1GB(1GB=210MB,1MB=210KB)時,計算機(jī)能夠正常使用,求本次開機(jī)計算機(jī)能正常使用的時長.20.(問答題,15分)已知函數(shù),x∈R.
(Ⅰ)在用“五點法”作函數(shù)f(x)的圖象時,列表如下:π2πxf(x)2在答題卡相應(yīng)位置完成上述表格,并在坐標(biāo)系中畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間上的值域.21.(問答題,15分)已知n為正整數(shù),集合Mn={(x1,x2,?,xn)|xi∈{0,1},i=1,2,?,n},對于Mn中任意兩個元素α=(a1,a2,?,an)和β=(b1,b2,?,bn),定義:α-β=(|a1-b1|,|a2-b2|,?,|an-bn|);d(α,β)=|a1-b1|+|a2-b2|+?+|an-bn|.
(Ⅰ)當(dāng)n=3時,設(shè)α=(0,1,0),β=(1,0,0),寫出α-β,并計算d(α,β);
(Ⅱ)若集合S滿足S?M3,且?α,β∈S,d(α,β)=2,求集合S中元素個數(shù)的最大值,寫出此時的集合S,并證明你的結(jié)論;
(Ⅲ)若?α,β∈Mn,且d(α,β)=2,任取γ∈Mn,求d(α-γ,β-γ)的值.
2021-2022學(xué)年北京市豐臺區(qū)高一(上)期末數(shù)學(xué)試卷參考答案與試題解析試題數(shù):21,總分:1501.(單選題,4分)已知函數(shù),那么f(-1)=()A.-2B.-1C.D.2【正確答案】:A【解析】:根據(jù)題意,由函數(shù)的解析式計算可得答案.
【解答】:解:根據(jù)題意,函數(shù),那么f(-1)==-2,
故選:A.
【點評】:本題考查函數(shù)解析式的計算,涉及函數(shù)值的計算,屬于基礎(chǔ)題.2.(單選題,4分)已知集合A∪B={0,1,2,3,4},B={1,2,4},那么集合A可能是()A.{1,2,3}B.{0,1,4}C.{0,1,3}D.{1,3,4}【正確答案】:C【解析】:根據(jù)題意和并集的運(yùn)算直接寫出A即可.
【解答】:解:因為集合A∪B={0,1,2,3,4},B={1,2,4},
所以集合A中必須要有0和3,另外再在1,2,4中加數(shù),也可以不加數(shù),
故選:C.
【點評】:本題考查并集及其運(yùn)算,屬于基礎(chǔ)題.3.(單選題,4分)已知a,b,c∈R,a>b,那么下列結(jié)論成立的是()A.a2>b2B.C.ac>bcD.a-c>b-c【正確答案】:D【解析】:直接利用不等式的性質(zhì)和賦值法的應(yīng)用求出結(jié)果.
【解答】:解:對于A:當(dāng)a=-1,b=-2時,不滿足a2>b2,故A錯誤;
對于B:當(dāng)a=0,b=-1時,無意義,故B錯誤;
對于C:當(dāng)c=0時,所以ac=bc,故C錯誤;
對于D:利用不等式的性質(zhì),所以a-c>b-c,故D正確.
故選:D.
【點評】:本題考查的知識要點:不等式的性質(zhì),賦值法,主要考查學(xué)生的運(yùn)算能力和數(shù)學(xué)思維能力,屬于基礎(chǔ)題.4.(單選題,4分)下列函數(shù)中,圖象關(guān)于坐標(biāo)原點對稱的是()A.B.y=x3C.y=|x|D.y=2x【正確答案】:B【解析】:由題意只要檢驗各選項中函數(shù)的奇偶性即可判斷.
【解答】:解:A:函數(shù)定義域(0,+∞)為非奇非偶函數(shù),不符合題意;
B:y=x3為奇函數(shù),圖象關(guān)于原點對稱,符合題意;
C:y=|x|為偶函數(shù),圖象關(guān)于y軸對稱,不符合題意;
D:y=2x為非奇非偶函數(shù),圖象關(guān)于原點不對稱,不符合題意.
故選:B.
【點評】:本題主要考查了函數(shù)奇偶性的判斷及奇函數(shù)性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.5.(單選題,4分)下列函數(shù)中,最小正周期為的是()A.y=cosxB.y=tanxC.y=cos2xD.y=tan2x【正確答案】:D【解析】:由題意利用三角函數(shù)的周期性,得出結(jié)論.
【解答】:解:由于y=cosx的最小正周期為2π,故排除A;
由于y=tanx的最小正周期為π,故排除B;
由于y=cos2x的最小正周期為π,故排除C;
由于y=tan2x的最小正周期為,故D滿足條件,
故選:D.
【點評】:本題主要考查三角函數(shù)的周期性,屬于基礎(chǔ)題.6.(單選題,4分)已知a>0,那么的最小值是()A.B.C.D.【正確答案】:D【解析】:由題中的條件,利用基本不等式即可解出.
【解答】:解:∵a>0,
∴2+3a+≥2+2=2+4,
當(dāng)且僅當(dāng)3a=時,取等號.
故選:D.
【點評】:本題考查了不等式的運(yùn)算,基本不等式,學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.7.(單選題,4分)已知函數(shù),那么“a=0”是“函數(shù)f(x)是增函數(shù)”的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件【正確答案】:A【解析】:根據(jù)充分必要條件的定義進(jìn)行判斷即可.
【解答】:解:當(dāng)a=0時,f(x)=,此時f(x)為單調(diào)增函數(shù),故“a=0”?“函數(shù)f(x)是增函數(shù)”;
若f(x)為增函數(shù),則有a≤0,故由“函數(shù)f(x)是增函數(shù)”不能推出“a=0”,
所以“a=0”是“函數(shù)f(x)是增函數(shù)”的充分不必要條件,
故選:A.
【點評】:本題考查了分段函數(shù)的單調(diào)性,充分必要條件的判定,屬于基礎(chǔ)題.8.(單選題,4分)盡管目前人類還無法準(zhǔn)確預(yù)報地震,但科學(xué)研究表明,地震時釋放出的能量E(單位:焦耳)與地震里氏震級M之間的關(guān)系為lgE=4.8+1.5M.已知兩次地震的能量與里氏震級分別為Ei與Mi(i=1,2),若M2-M1=2,則=()A.103B.3C.lg3D.10-3【正確答案】:A【解析】:利用對數(shù)運(yùn)算法則和指數(shù)與對數(shù)互化求解.
【解答】:解:由題意得:lgE1=4.8+1.5M1,lgE2=4.8+1.5M2,
兩式相減得:lg=1.5(M2-M1),
∵M(jìn)2-M1=2,∴=103.
故選:A.
【點評】:本題考查對數(shù)的運(yùn)算,考查指數(shù)、對數(shù)的性質(zhì)、運(yùn)算法則等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.9.(單選題,4分)在特定條件下,籃球賽中進(jìn)攻球員投球后,籃球的運(yùn)行軌跡是開口向下的拋物線的一部分.“蓋帽”是一種常見的防守手段,防守隊員在籃球上升階段將球攔截即為“蓋帽”,而防守隊員在籃球下降階段將球攔截則屬“違規(guī)”.對于某次投籃而言,如果忽略其他因素的影響,籃球處于上升階段的水平距離越長,則被“蓋帽”的可能性越大.
收集幾次籃球比賽的數(shù)據(jù)之后,某球員投籃可以簡化為下述數(shù)學(xué)模型:如圖所示,該球員的投籃出手點為P,籃框中心點為Q,他可以選擇讓籃球在運(yùn)行途中經(jīng)過A,B,C,D四個點中的某一點并命中Q,忽略其他因素的影響,那么被“蓋帽”的可能性最大的線路是()A.P→A→QB.P→B→QC.P→C→QD.P→D→Q【正確答案】:B【解析】:定性分析即可得到答案.
【解答】:解:B、D兩點,橫坐標(biāo)相同,而D點的縱坐標(biāo)大于B點的縱坐標(biāo),顯然,B點上升階段的水平距離長;
A,B兩點,縱坐標(biāo)相同,而A點的橫坐標(biāo)小于B點的橫坐標(biāo),等經(jīng)過A點的籃球運(yùn)行到與B點橫坐標(biāo)相同時,顯然在B點上方,故B點上升階段的水平距離長;
同理可知C點路線優(yōu)于A點路線,
綜上:P→B→Q是被“蓋帽”的可能性最大的線路.
故選:B.
【點評】:本題考查了合情推理,屬于基礎(chǔ)題.10.(單選題,4分)將函數(shù)f(x)的圖象向右平移φ(φ>0)個單位長度,得到函數(shù)的圖象.若x=0是函數(shù)F(x)=f(x)-g(x)的一個零點,則φ的最小值是()A.B.C.D.【正確答案】:C【解析】:直接利用函數(shù)的關(guān)系式的變換和函數(shù)的圖象的平移變換的應(yīng)用求出結(jié)果.
【解答】:解:將函數(shù)f(x)的圖象向右平移φ(φ>0)個單位長度,得到函數(shù)的圖象;
故函數(shù)f(x)=sin(x++φ),
由于x=0是函數(shù)F(x)=f(x)-g(x)的一個零點,
故sin(+φ)=sin,
故當(dāng)φ的最小值為時,關(guān)系式相等.
故選:C.
【點評】:本題考查的知識要點:三角函數(shù)的關(guān)系式的變換,函數(shù)的零點和方程的根,主要考查學(xué)生的運(yùn)算能力和數(shù)學(xué)思維能力,屬于基礎(chǔ)題.11.(填空題,5分)已知冪函數(shù)y=xα的圖象經(jīng)過點(2,8),那么α=___.【正確答案】:[1]3【解析】:由題意代入點的坐標(biāo),即可求出α的值.
【解答】:解:指數(shù)函數(shù)f(x)=xα(α>0,α≠1)的圖象經(jīng)過點(2,8),
∴8=2α,
解得:α=3,
故答案為:3.
【點評】:本題考查了冪函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.12.(填空題,5分)在平面直角坐標(biāo)系xOy中,角α與角β均以x軸的非負(fù)半軸為始邊,它們的終邊關(guān)于坐標(biāo)原點對稱.若,則sinβ=___.【正確答案】:[1]-【解析】:由題意利用任意角的三角函數(shù)的定義即可求解.
【解答】:解:∵在平面直角坐標(biāo)系xOy中,角α與角β均以x軸的非負(fù)半軸為始邊,它們的終邊關(guān)于坐標(biāo)原點對稱,且,
∴sinβ=sin(-α)=-.
故答案為:-.
【點評】:本題考查任意角的三角函數(shù)的定義,考查了函數(shù)思想,屬于基礎(chǔ)題.13.(填空題,5分)已知命題“?x∈R,ex≥a”是真命題,那么實數(shù)a的取值范圍是___.【正確答案】:[1](-∞,0]【解析】:根據(jù)題意,由指數(shù)函數(shù)的性質(zhì)可得ex>0,結(jié)合全稱命題的定義分析可得答案.
【解答】:解:根據(jù)題意,?x∈R,ex>0,
若命題“?x∈R,ex≥a”是真命題,必有a≤0,即a的取值范圍為(-∞,0];
故答案為:(-∞,0].
【點評】:本題考查命題真假的判斷,注意全稱命題的定義,屬于基礎(chǔ)題.14.(填空題,5分)函數(shù)f(x)=cos2x-2cosx+1的最小值是___.【正確答案】:[1]0【解析】:將函數(shù)整理,由cosx的范圍可得f(x)的最小值.
【解答】:解:f(x)=cos2x-2cosx+1=(cosx-1)2,
又因為cosx∈[-1,1],
所以當(dāng)cosx=1時,f(x)最小為0,
故答案為:0.
【點評】:本題考查三角函數(shù)的最值的求法,考查計算能力,是基礎(chǔ)題.15.(填空題,5分)中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術(shù).現(xiàn)有兩名剪紙藝人創(chuàng)作甲、乙兩種作品,他們在一天中的工作情況如圖所示,其中點Ai的橫、縱坐標(biāo)分別為第i名藝人上午創(chuàng)作的甲作品數(shù)和乙作品數(shù),點Bi的橫、縱坐標(biāo)分別為第i名藝人下午創(chuàng)作的甲作品數(shù)和乙作品數(shù),i=1,2.給出下列四個結(jié)論:
①該天上午第1名藝人創(chuàng)作的甲作品數(shù)比乙作品數(shù)少;
②該天下午第1名藝人創(chuàng)作的乙作品數(shù)比第2名藝人創(chuàng)作的乙作品數(shù)少;
③該天第1名藝人創(chuàng)作的作品總數(shù)比第2名藝人創(chuàng)作的作品總數(shù)少;
④該天第2名藝人創(chuàng)作的作品總數(shù)比第1名藝人創(chuàng)作的作品總數(shù)少.
其中所有正確結(jié)論的序號是___.【正確答案】:[1]①②④【解析】:根據(jù)已知及圖象逐一判斷即可.
【解答】:解:①由圖象可知A1的橫坐標(biāo)小于縱坐標(biāo),所以該天上午第1名藝人創(chuàng)作的甲作品數(shù)比乙作品數(shù)少,故①正確;
②由圖象可知B1的縱坐標(biāo)小于B2的縱坐標(biāo),所以該天下午第1名藝人創(chuàng)作的乙作品數(shù)比第2名藝人創(chuàng)作的乙作品數(shù)少,故②正確;
③由圖象可知第1名藝人上午創(chuàng)作的甲作品數(shù)和乙作品數(shù)都多于第2名藝人上午創(chuàng)作的甲作品數(shù)和乙作品數(shù),
第1名藝人下午創(chuàng)作的甲作品多于第2名藝人下午創(chuàng)作的甲作品,創(chuàng)作的乙作品少于第2名藝人下午創(chuàng)作的乙作品,
但該天第2名藝人創(chuàng)作的作品總數(shù)比第1名藝人創(chuàng)作的作品總數(shù)少,故③錯誤,④正確.
故答案為:①②④.
【點評】:本題主要考查命題真假的判斷,考查數(shù)形結(jié)合思想,屬于中檔題.16.(問答題,13分)已知不等式x2+ax+b<0(a,b∈R)的解集A={x|-1<x<2}.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若集合B={x|x<0},求A∩B,A∪(?RB).【正確答案】:
【解析】:(Ⅰ)直接根據(jù)韋達(dá)定理即可求解,
(Ⅱ)直接根據(jù)集合得基本運(yùn)算求解即可.
【解答】:解:(Ⅰ)∵不等式x2+ax+b<0(a,b∈R)的解集A={x|-1<x<2},
∴-1和2是方程x2+ax+b=0的兩根,
∴-1+2=-a且(-1)×2=b,
∴a=-1,b=-2,
(Ⅱ)∵集合B={x|x<0},
∴?RB={x|x≥0},
∴A∩B={x|-1<x<0},A∪(?RB)={x|x>-1}.
【點評】:本題主要考查韋達(dá)定理以及集合的基本運(yùn)算,比較基礎(chǔ).17.(問答題,14分)已知,且α是第二象限角.
(Ⅰ)求sinα的值;
(Ⅱ)求的值.【正確答案】:
【解析】:(Ⅰ)由已知利用同角三角函數(shù)基本關(guān)系式即可求解.
(Ⅱ)利用誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式即可求解.
【解答】:解:(Ⅰ)因為,且α是第二象限角,
所以sinα==;
(Ⅱ)==cosα=-.
【點評】:本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)求值中的應(yīng)用,屬于基礎(chǔ)題.18.(問答題,14分)已知函數(shù)f(x)=lg(1+x)+lg(1-x).
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并證明;
(Ⅲ)判斷函數(shù)f(x)在區(qū)間(0,1)上的單調(diào)性,并用定義證明.【正確答案】:
【解析】:(Ⅰ)由對數(shù)式的真數(shù)大于0,聯(lián)立不等式組求解;
(Ⅱ)直接利用函數(shù)奇偶性的定義證明;
(Ⅲ)直接利用函數(shù)單調(diào)性的定義證明.
【解答】:解:(Ⅰ)由,得-1<x<1;
∴函數(shù)f(x)的定義域為(-1,1);
(Ⅱ)f(x)是定義域內(nèi)的偶函數(shù).
證明如下:
∵f(-x)=lg(1-x)+lg(1+x)=f(x),
且f(x)的定義域為(-1,1),
∴f(x)是定義域內(nèi)的偶函數(shù);
(Ⅲ)函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞減.
證明如下:
f(x)=lg(1+x)+lg(1-x)=lg(1-x2),
設(shè)0<x1<x2<1,
則f(x1)-f(x2)==,
∵0<x1<x2<1,∴<1,則,
∴,即f(x1)-f(x2)>0,f(x1)>f(x2),
∴函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞減.
【點評】:本題考查函數(shù)的定義域及其求法,考查函數(shù)的奇偶性與單調(diào)性的判定及證明,是中檔題.19.(問答題,14分)一種專門占據(jù)內(nèi)存的計算機(jī)病毒,能在短時間內(nèi)感染大量文件,使每個文件都不同程度地加長,造成磁盤空間的嚴(yán)重浪費(fèi).這種病毒開機(jī)時占據(jù)內(nèi)存2KB,每3分鐘后病毒所占內(nèi)存是原來的2倍.記x分鐘后的病毒所占內(nèi)存為yKB.
(Ⅰ)求y關(guān)于x的函數(shù)解析式;
(Ⅱ)如果病毒占據(jù)內(nèi)存不超過1GB(1GB=210MB,1MB=210KB)時,計算機(jī)能夠正常使用,求本次開機(jī)計算機(jī)能正常使用的時長.【正確答案】:
【解析】:(Ⅰ)由題意可得,第x分鐘后,病毒所占內(nèi)存為2x+1;
(Ⅱ)由=210?210=220,求解指數(shù)方程得答案.
【解答】:解:(Ⅰ)因為在剛開機(jī)時它占據(jù)的內(nèi)存2KB,然后每3分鐘自身復(fù)制一次,復(fù)制后所占的內(nèi)存是原來的2倍,
所以,一個三分鐘后它占據(jù)的內(nèi)存為2×2=22;
兩個三分鐘后它占據(jù)的內(nèi)存為2×2×2=23;
三個三分鐘后它占據(jù)的內(nèi)存為23×2=24;
…
所以,x分鐘后它占據(jù)的內(nèi)存為;
(Ⅱ)由=210?210=220,得,解得x=57.
故本次開機(jī)計算機(jī)能正常使用的時長為57分鐘.
【點評】:本題考查函數(shù)模型的選擇及應(yīng)用,考查運(yùn)算求解能力,正確理解題意是關(guān)鍵,是基礎(chǔ)題.20.(問答題,15分)已知函數(shù),x∈R.
(Ⅰ)在用“五點法”作函數(shù)f(x)的圖象時,列表如下:π2πxf(x)2在答題卡相應(yīng)位置完成上述表格,并在坐標(biāo)系中畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間上的值域.【正確答案】:
【解析】:(Ⅰ)分別計算五點坐標(biāo),利用五點法即可畫出圖形.
(Ⅱ)利用正弦函數(shù)的單調(diào)性即可得解.
(Ⅲ)利用正弦函數(shù)的性質(zhì)即可得解.
【解答】:解:(Ⅰ)完成上述表格如下:2x-π2πxy=2sin(2x-)2-2描點,連線,可得圖象如下:
(Ⅱ)令2kπ-≤2x-≤2kπ+,k∈Z,解得kπ-≤x≤kπ+,k∈Z,
可得函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-,kπ+],k∈Z.
(Ⅲ)因為x∈,可得2x-∈[-,],
所以sin(2x-)∈[-1,],∈[-2,].
【點評】:本題考查了五點法作函數(shù)y=Asin(ωx+φ)的圖象以及正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,考查了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國防爆電器行業(yè)十三五規(guī)劃及發(fā)展趨勢分析報告
- 2025-2030年中國鋪管船市場競爭狀況及發(fā)展趨勢分析報告
- 2025-2030年中國鎢材產(chǎn)業(yè)十三五規(guī)劃及投資戰(zhàn)略研究報告
- 2025年吉林省安全員C證考試(專職安全員)題庫及答案
- 2025-2030年中國道路標(biāo)線行業(yè)規(guī)模分析及發(fā)展建議研究報告
- 2025-2030年中國蜂王漿凍干粉市場發(fā)展?fàn)顩r及營銷戰(zhàn)略研究報告
- 2025-2030年中國背光模組行業(yè)運(yùn)行狀況及發(fā)展趨勢分析報告
- 2025-2030年中國翡翠玉鐲市場運(yùn)行狀況與前景趨勢分析報告
- 揚(yáng)州大學(xué)《室內(nèi)設(shè)計(實踐)》2023-2024學(xué)年第二學(xué)期期末試卷
- 西藏職業(yè)技術(shù)學(xué)院《智能應(yīng)用系統(tǒng)開發(fā)》2023-2024學(xué)年第二學(xué)期期末試卷
- 小學(xué)四年級上冊數(shù)學(xué)應(yīng)用題100道及答案解析
- 2025春部編版一年級下冊語文教學(xué)工作計劃
- 《煤礦頂板管理》課件
- 醫(yī)療器械監(jiān)督管理條例
- 2024年重慶市公務(wù)員錄用考試《行測》真題及答案解析
- 2024年P(guān)IE工程師培訓(xùn)教程:敏捷項目管理
- 新能源汽車驅(qū)動電機(jī)及控制系統(tǒng)檢修課件 學(xué)習(xí)情境5:電機(jī)控制器
- 短視頻內(nèi)容課件
- 網(wǎng)絡(luò)試運(yùn)行方案
- 高考英語語法考點梳理
- 《護(hù)患溝通》課件
評論
0/150
提交評論