第一節(jié)系統(tǒng)的穩(wěn)定性_第1頁(yè)
第一節(jié)系統(tǒng)的穩(wěn)定性_第2頁(yè)
第一節(jié)系統(tǒng)的穩(wěn)定性_第3頁(yè)
第一節(jié)系統(tǒng)的穩(wěn)定性_第4頁(yè)
第一節(jié)系統(tǒng)的穩(wěn)定性_第5頁(yè)
已閱讀5頁(yè),還剩35頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第一節(jié)系統(tǒng)的穩(wěn)定性第一頁(yè),共四十四頁(yè),2022年,8月28日穩(wěn)定性和代數(shù)穩(wěn)定判據(jù)(Stabilityofthesystemandthealgebracriteria)典型輸入作用和時(shí)域性能指標(biāo)(Typicalinputandtimeperformanceindex)一階系統(tǒng)的瞬態(tài)響應(yīng)(Transientresponseofoneorderdynamicalsystem)二階系統(tǒng)的瞬態(tài)響應(yīng)(Transientresponseoftwoorderdynamicalsystem)穩(wěn)態(tài)誤差分析(Steadyerroranalyse)主要內(nèi)容(Mainissues)第二頁(yè),共四十四頁(yè),2022年,8月28日第一節(jié)系統(tǒng)的穩(wěn)定性和

代數(shù)穩(wěn)定判據(jù)

Section1Stabilityofthecontrolsystemandtheitsalgebraevaluationcriteria第三頁(yè),共四十四頁(yè),2022年,8月28日1.穩(wěn)定的基本概念和線性系統(tǒng)穩(wěn)定的充要條件(Basicconceptofsystemstabilityanditsthesufficient,necessaryconditionofthelinearcontrolsystem)1)Stabilizingofcontrolsystemisthemostimportantconditionforsystemtorunproperly.2)Infact,therealsystemisalwaysaffectedbytheoutsideorinsidedisturbances,suchasloadvarying,energywave,systemparameterchanging,environmentchangingetc.3)Ifthesystemisunstable,systemwilldeparturetheinitialbalancestateunderanysmallwave,andwilldispersewiththetimegoing.4)Toanalyzethesystemstabilityandtomakeouttheplantoensurethesystemstableisthebasicgoalofcontroltheory.穩(wěn)定的充要條件和屬性第四頁(yè),共四十四頁(yè),2022年,8月28日

穩(wěn)定的基本概念(Basicconceptofstability):Ifthesystemisinthestateofbalance,itwilldepartthestateundertheeffectofoutsideexciting.whentheoutsideexcitingisdisappeared,thesystemwillreturntotheoriginalstateasitrunsforsolongtime.Thesystemisstable,orthesystemisoffstability.Orelsethesystemisunstable,orthesystemisofinstability.

第五頁(yè),共四十四頁(yè),2022年,8月28日Considerthefollowdifferentialequation:+polynomialrelativewithinitialvalue穩(wěn)定的充要條件和屬性DoLaplacetransform:where:x(t)—inputy(t)—output;isconstants.第六頁(yè),共四十四頁(yè),2022年,8月28日Thefirstitemiszerostatesolution,andisrelatedwiththeresponseexcitedbytheinput.Theseconditemiszeroinputsolution,andisrelatedwiththeresponseexcitedbytheinitialvalue.第七頁(yè),共四十四頁(yè),2022年,8月28日necessaryandsufficientconditionoflinearsystemstabilizingis:allthesystemcharacteristicrootsareofnegativerealpart(Eigenvalue),orallthesystemcharacteristicrootsarelainonthelefthalfplaneofscomplexplane.穩(wěn)定的充要條件和屬性第八頁(yè),共四十四頁(yè),2022年,8月28日充要條件說(shuō)明ifthereisapositiverealrootforasystem,itmeansthesystemresponseisdispersive.ifthereisapairofpositiverealpartcomplexrootforasystem,itmeansthesystemresponseisperioddispersiveoscillation.bothcasesareunstable.

ifthereisazerorootforasystem,itmeansthesystemresponseisrandombalancestate.ifthereisapairofimaginaryrootsforasystem,itmeansthesystemresponseisoscillatingstateinaconstantsize.StablezoneNonstablezoneCriticalStablezoneSplane第九頁(yè),共四十四頁(yè),2022年,8月28日Fortheoneordersystem,ifandonlyifarepositive,thesystemisstable.Ifandonlyifarepositive,thesystemisstable.For3ormoreordersystem,itismoredifficulttogettherootsofaalgebraequation.Howcanwedo?充要條件說(shuō)明Notice:Systemstabilityisaqualityoflinearsystem,andisjustrelatedwiththesystemstructureandparameter,butnotrelatedwiththeinputsignal.

notrelatedwiththe

initialcondition.

Systemstabilityisjustrelatedwiththepolar,notrelatedwiththezero.Forthe2ordersystem第十頁(yè),共四十四頁(yè),2022年,8月28日2.Routh-Hurwitzcriterion

Consideringthecharacteristicequationofthelinearsystem勞斯判據(jù)1).Routhcriterion:Thenecessaryandsufficientconditionofthesystemisasfollow:b.AlltheelementswhicharelainonthefirstcolumnoftheRoutharray,andarecomposedofthecoefficientsofthecharacteristicequationshouldbepositive.a.Allthepolynomialcoefficientsofthecharacteristicequationshouldbepositive;第十一頁(yè),共四十四頁(yè),2022年,8月28日ThefirsttwolineelementsoftheRoutharrayconsistofthecoefficientsofcharacteristicequation.Thefirstrowelementsarecomposedofthecoefficientsan,an-2,an-4,...;Thesecondrowelementsarecomposedofthecoefficients

an-1,an-3,an-5,….HowtoconstructtheRouthtable?第十二頁(yè),共四十四頁(yè),2022年,8月28日勞斯判據(jù)Therulestocalculatethe3throwelementsisasfollow:第十三頁(yè),共四十四頁(yè),2022年,8月28日勞斯判據(jù)Therulestocalculatethe4throwelementsisasfollow:第十四頁(yè),共四十四頁(yè),2022年,8月28日Accordingtotheabovesimilarmethod,theremainelementscanalsobelead.Therulestocalculatethe5throwelementsisasfollow:第十五頁(yè),共四十四頁(yè),2022年,8月28日勞斯判據(jù)例子[example]consideringthesystemwhichcharacteristicequationis:①TowritedowntheRoutharrayasrightposition②Accordingtothenecessaryandsufficientconditionofastablesystem,wecanget:andTductof2innercoefficientsminusproductof2outcoefficientsispositive.第十六頁(yè),共四十四頁(yè),2022年,8月28日2)DiscussionofthespecialconditionoftheRoutharrayandsomeconclusionb.

ThesystemisunstableifalltheelementsinthefirstcolumnofRoutharrayarenotzerobutnotallarepositive.勞斯判據(jù)特殊情況a.ItwillnotaffectthesystemstabilitytomultipleordivideallelementsinarowoftheRoutharraywithapositivenumber;c.Italsoindicatethattherearesomecharacteristicrootsintherighthalfplanofcomplexnumberplanes.d.ThenumberoftheunstablerootsisequaltothechangedsignnumberofelementsinthefirstrankofRoutharray.第十七頁(yè),共四十四頁(yè),2022年,8月28日[example]Assumethatthesystemcharacteristicequationis:-130(2)100()③Thereis2signchangesinthefirstcolumn.Trytofindthenumberofunstablerootofthesystem.Discuss:

①TolisttheRoutharray;②Thereisanegativenumberinthefirstcolumn.Thesystemisunstable.④2unstablecharacteristicrootsareintherighthalfsplane.第十八頁(yè),共四十四頁(yè),2022年,8月28日勞斯判據(jù)特殊情況

e.IfthefirstelementiszerobuttheothersinonelineoftheRouthtablearenotallzero,Anewmethodshouldbeconsidered.[Solution]:tosubstitutetheelement‘0’withaverysmallpositivenumber.Atlastcountingthesign-changednumber.Afterthentocalculatetheotherelementsonthelineorbelowtheline.第十九頁(yè),共四十四頁(yè),2022年,8月28日[example]Consideringthecharacteristicequation:Let,then③Thereis2signchangesthatmeans2unstablerootsintherighthalfplaneofcomplexnumberplanes.

②toanalyse:Trytofindthenumberofunstablerootofthesystem.Discuss:

①tolisttheRoutharray;Clearly,thereisanegativenumberinfirstcolumn.Thesystemisunstable.第二十頁(yè),共四十四頁(yè),2022年,8月28日f(shuō).AllthenumbersinaRoutharrayrowarezero.Itmeansthatthereisapairofcharacteristicrootswhichareequalinsizeandoppositeinsign.勞斯判據(jù)特殊情況Thereare3casesas:apairofrealrootswhichareequalinsizeandoppositeinsign;orapairofconjugateimaginaryroots;or2pairofconjugatecomplexnumberrootswhicharesymmetrictotheimaginaryaxis.╳╳╳╳╳╳╳╳第二十一頁(yè),共四十四頁(yè),2022年,8月28日[example][Solution]:toconstructanassistantalgebraequationofcomplexnumbervariablesaccordingtothecoefficientsofthelastrowinwhichthecoefficientsarenonzero.b.Todifferentiatetheassistantequationandgetthenewequationc.Tosubstitutethecoefficientsofthezerorowwiththecoefficientsofthenewequation.Notice:theassistantequationmustbeevenorder.第二十二頁(yè),共四十四頁(yè),2022年,8月28日[example]todiscussthestabilityofthebelowsystem.168168130380勞斯判據(jù)特殊情況④tosimplifyit;Analyse:①tolisttheRoutharray;②tobuildtheassistantequation;③todifferentiatetheaboveequationtogetanewone;⑤tosubstitutethecoefficientswiththenewcoefficientsfromthesimplifiedequation.⑥tocontinuethelisttheRoutharray⑦todeterminetheunstableroots.第二十三頁(yè),共四十四頁(yè),2022年,8月28日Itseemsthatthesystemisstablebecausetheelementsarebiggerthanorequaltozero.Clearlythesystemiscriticalstablethatmeansunstableinanengineeringmeaning.168168130380Tobuildanassistantequationasbelowandtosolveit,wemayget:第二十四頁(yè),共四十四頁(yè),2022年,8月28日3).Hurwitzcriterion赫爾維茨判據(jù)ConsideringthecharacteristicequationofthelinearsystemThenecessaryandsufficientconditionofthesystemisasfollow:andWhere:ΔistheHurwitzdeterminant,andΔiisthehostsub-determinant.第二十五頁(yè),共四十四頁(yè),2022年,8月28日①Eachofthehostdiagonalelementsisthecoefficientsofcharacteristicpolynomialfromthesecondtothelast.Problem1.HowtoconstructtheHurwitzarray?②Eachelementofeachrowbelowthehostdiagonalissomecoefficientsaccordingtosubscriptincreasing.③Eachelementofeachrowabovethehostdiagonalissomecoefficientsaccordingtosubscriptdecreasing.④Alltheelementis0whenthesubscriptisbiggerthannorsmallerthan0.subscriptdecreasingsubscriptincreasing第二十六頁(yè),共四十四頁(yè),2022年,8月28日Problem2.Howtoconstructthehostsub-determinant?第二十七頁(yè),共四十四頁(yè),2022年,8月28日赫爾維茨判據(jù)[example]:todiscussthestabilityof4ordersystemasbelow.Hurwitzdeterminantis:Thenecessaryandsufficientconditionis:第二十八頁(yè),共四十四頁(yè),2022年,8月28日赫爾維茨判據(jù)的另一種形式ItisanotherformofHurwitzcriterion.where:isallthehostsub-determinantswithdifferentorder.4).Lienard-Chipard

criterionThenecessaryandsufficientconditionofthesystemis:Forthesystemwiththecharacteristicequationas:or第二十九頁(yè),共四十四頁(yè),2022年,8月28日3.ApplicationofRouth–Hurwitzcriterion1)Todeterminethesystemstability[example]ifthesystemcharacteristicequationis:,trytodeterminethesystemstability.Analyse:①

TolisttheRoutharrayasbelow:2unstablerootsareintherighthalfplane.

Thesystemisunstable.②③

Thereis2signchanges第三十頁(yè),共四十四頁(yè),2022年,8月28日[example]

ifthesystemcharacteristicequationis:trytodeterminethesystemstability.Analyse:systemcharacteristicequationcanberewriteas:TheHurwitzdeterminantis:Thehostsub-determinantcanbecalculatedasTheconclusionisthatthesystemisstable.第三十一頁(yè),共四十四頁(yè),2022年,8月28日2)Toanalyzetheinfluenceofsystemparameterchanging[example]thesystemblockdiagramisgivenasbelow,trytodeterminethecriticalamplifyingcoefficient.[Solution]closedlooptransferfunctionis:Thecharacteristicequationis:AnimportanteffectoftheRouth-Hurwitzcriterionistoanalyzetheinfluenceofsomesystemparametersvaryingsuchastheopen-loopsystemamplifyingcoefficientK.Wecanusethecriteriontodeterminethemaximum–criticalamplifyingcoefficient.第三十二頁(yè),共四十四頁(yè),2022年,8月28日TowriteouttheRoutharrayasbelow:Accordingtothenecessaryandsufficientcondition:①allthecoefficientsmustbebiggerthan0.②theelementslainonthefirstcolumnoftheRoutharrayshouldbepositive.Thenwemayget:Thecriticalamplifyingcoefficientis.Thecharacteristicequationis:第三十三頁(yè),共四十四頁(yè),2022年,8月28日3)Todeterminetherelativesystemstability(stabilizationabundance)Asweknow,wecanusetheRouth-Hurwitzcriteriontodeterminewhetheracontrolsystemisstableorunstable.Itisaabsolutestability.ifwewanttoknowtherelativestabilityofacontrolsystem,orhowcanitbedetermined?Usually,thedistancebetweenthecharacteristicrootpofthemaximumrealpartandtheimaginaryaxisisusedvirtuallytoexpressthesystemstabilizationabundance.Clearly,ifpislainontheimaginaryaxis,,thatmeansthesystemstabilizationabundanceis0.Howdowedeterminethesystemstabilizationabundance?第三十四頁(yè),共四十四頁(yè),2022年,8月28日Todrawaverticallineonthecomplexplaneswhichisparalleltotheimaginaryaxis,andifallthecharacteristicrootsareontheleftoftheline,thesystemiscalledofstabilizationabundance.Thebiggertheis,themorestablethesystemis.Problem:Howtofindtheinacontrolsystem?①Let,andsubstitutethecomplexvariableswithinthecharacteristicequation,thenleadanewcharacteristicequationwithanewcomplexvariablez.②UseRouth-Hurwitzcriteriontoanalyzethesystemstabilityaccordingtothenewcharacteristicequation.③Ifthenewsystemisstable,theoriginalsystemiscalledofstabilizationabundance.第三十五頁(yè),共四十四頁(yè),2022年,8月28日[example]asystemcharacteristicequationis,Thereisapairofimaginaryroots.Thenewsystemiscriticalstable.Andtheoriginalsystemisof1abundancestability.Howabouttherelativesystemstability?[solution]clearly,AndThesystemisstable.Let,substitutetheswithz-1,thenewequationis:or第三十六頁(yè),共四十四頁(yè),2022年,8月28日Usually,therealpartofthecogentcomplexrootrepresentstheattenuationspeedofsystemresponse,whereastheimaginarypartofthecogentcomplexrootrepresentstheoscillatingofsystemresponse.istheanglebetweenthepolarandthenegativerealaxis.Thesmallertheangleis,thebetterthesystemqualityis.Anotherformtodiscusstherelativestability,therelativestabilityisworst.第三十七頁(yè),共四十四頁(yè),2022年,8月28日3.Essentialunstablesystemandtheplantoimprove1)Whatistheessentialunstablesystem?Itisthesystemwhoseperformancecannotbeimprovedjustbyadjustingthesystemparameters.結(jié)構(gòu)不穩(wěn)定系統(tǒng)及其改進(jìn)措施-杠桿和放大器的傳遞函數(shù)執(zhí)行電機(jī)的傳遞函數(shù)進(jìn)水閥門的傳遞函數(shù)控制對(duì)象水箱的傳遞函數(shù)2)Example:liquidheightcontrolsystem第三十八頁(yè),共四十四頁(yè),2022年,8月28日結(jié)構(gòu)不穩(wěn)定系統(tǒng)及其改進(jìn)措施Closedlooptransferfunction:let:Characteristicequation:or:clearly:Routharray:Nomatterhowtochange

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論