基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃_第1頁(yè)
基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃_第2頁(yè)
基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃_第3頁(yè)
基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃_第4頁(yè)
基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃

摘要:多智能體系統(tǒng)中的路徑規(guī)劃問(wèn)題是現(xiàn)代機(jī)器人技術(shù)研究的重要課題。針對(duì)傳統(tǒng)路徑規(guī)劃技術(shù)因受環(huán)境地形限制、難以適應(yīng)復(fù)雜環(huán)境等問(wèn)題,在本文中,我們提出了一種基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃算法。首先,我們將問(wèn)題建模為馬爾可夫決策過(guò)程,并通過(guò)深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練智能體在不同狀態(tài)下的最佳策略。其次,我們提出了一種基于遺傳算法的策略集結(jié)構(gòu),通過(guò)對(duì)不同策略的組合和優(yōu)化,獲得了更為魯棒的路徑規(guī)劃結(jié)果。最后,我們?cè)诙喾N仿真環(huán)境下進(jìn)行實(shí)驗(yàn)驗(yàn)證,以證明所提出算法的有效性和魯棒性。實(shí)驗(yàn)結(jié)果表明,本文所提出的基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃算法可以在多智能體協(xié)同環(huán)境中快速、準(zhǔn)確地完成路徑規(guī)劃任務(wù)。

關(guān)鍵詞:路徑規(guī)劃;多智能體系統(tǒng);深度強(qiáng)化學(xué)習(xí);馬爾可夫決策過(guò)程;遺傳算法

Abstract:Thepathplanningprobleminmulti-agentsystemsisanimportantissueinmodernroboticsresearch.Inthispaper,weproposeamulti-agentpathplanningalgorithmbasedondeepreinforcementlearningtoaddressthelimitationsoftraditionalpathplanningtechniques,suchasenvironmentalterrainconstraintsanddifficultyinadaptingtocomplexenvironments.First,wemodeltheproblemasaMarkovdecisionprocessandtraintheagents'optimalpoliciesunderdifferentstatesbyusingdeepneuralnetworks.Secondly,weproposeastrategysetstructurebasedongeneticalgorithmstoobtainmorerobustpathplanningresultsthroughcombinationandoptimizationofdifferentstrategies.Finally,weconductexperimentalvalidationinmultiplesimulationenvironmentstodemonstratetheeffectivenessandrobustnessoftheproposedalgorithm.Theexperimentalresultsshowthatthemulti-agentpathplanningalgorithmbasedondeepreinforcementlearningproposedinthispapercanquicklyandaccuratelycompletepathplanningtasksinmulti-agentcollaborativeenvironments.

Keywords:pathplanning;multi-agentsystem;deepreinforcementlearning;Markovdecisionprocess;geneticalgorithInrecentyears,significantattentionhasbeengiventotheproblemofpathplanninginmulti-agentsystemsduetoitsessentialroleinvariousapplications,includingrobotics,automatedtransportationsystems,andswarmintelligence.Tosolvethisproblem,manyapproacheshavebeenproposed,suchasgeneticalgorithms,neuralnetworks,andreinforcementlearning.

Inthispaper,weproposedamulti-agentpathplanningalgorithmbasedondeepreinforcementlearning.Thealgorithmaimstofindanoptimalpathformultipleagentstoachieveacommongoalwhileavoidingcollisionswitheachotherandobstaclesintheenvironment.Toachievethis,ouralgorithmusesaMarkovdecisionprocess(MDP)tomodelthepathplanningproblemasasequentialdecision-makingprocess.Wethentrainadeepreinforcementlearningagentforeachagentinthesystem,whichlearnstomakeoptimaldecisionsbasedontheobservationsofitslocalenvironment.

Tovalidatetheperformanceofourproposedalgorithm,weconductedexperimentsinmultiplesimulationenvironmentswithdifferentnumbersofagentsandobstacleconfigurations.Theresultsshowthatouralgorithmcanquicklyandaccuratelycompletepathplanningtasksinmulti-agentcollaborativeenvironments.Morespecifically,comparedwithotherexistingapproaches,ouralgorithmshowshighersuccessrates,lowercollisionrates,andshorterplanningtimes.

Furthermore,wealsoconductedsensitivityanalysistoexaminetherobustnessandadaptabilityofouralgorithmunderdifferentscenarios.Theresultsshowthatouralgorithmcanmaintaingoodperformanceinvariousscenarioswithdifferentagentnumbers,obstacleshapes,andsizes.

Insummary,ourproposedmulti-agentpathplanningalgorithmbasedondeepreinforcementlearningprovidesapromisingsolutiontothecomplexandchallengingproblemofmulti-agentpathplanning.Theresultsdemonstratetheeffectivenessandrobustnessofouralgorithminvariouspracticalscenarios,highlightingitspotentialinreal-worldapplicationsFurthermore,ouralgorithmcanhandlescenarioswithvaryingagentnumbers.Wehavetestedouralgorithmwithupto20agents,andithasshowngoodperformance.Inscenarioswithalargenumberofagents,ouralgorithmeffectivelybalancestheexplorationversusexploitationtrade-off,leadingtoefficientandcollision-freepaths.

Ouralgorithmisalsorobusttodifferentobstacleshapesandsizes.Wehavetestedouralgorithmwithvariousobstacleshapes,suchascircles,rectangles,andirregularshapes.Ouralgorithmconsistentlygeneratedcollision-freepathsbyavoidingtheobstacles.Evenwhentheobstacleswereplacedincomplexarrangements,ouralgorithmwasstillabletofindsafeandefficientpathsfortheagents.

Moreover,ouralgorithmisreadilyapplicabletoscenarioswithdifferentroadnetworktopologies.Forexample,inscenarioswithmultiplenarrowpaths,ouralgorithmtendstoguidetheagentstowardslesscrowdedareastoavoidcongestion.Inscenarioswithopenareas,ouralgorithmenablesfastandefficientmovementsbyallowingtheagentstotakestraightpaths.

Inaddition,ouralgorithmcanhandlesituationswhereagentshavedifferentproperties,suchasdifferentspeedsorpriorities.Wehavetestedouralgorithminscenarioswithagentsofvaryingspeeds,andithasshowntheabilitytoeffectivelycoordinatethemovementsoftheagents.Similarly,inscenarioswithagentsofdifferentpriorities,ouralgorithmwasabletoassignprioritiesandgeneratecollision-freepathsaccordingly.

Finally,ouralgorithmcanhandlescenarioswithdynamicobstacles.Wehavetestedouralgorithminscenarioswhereobstaclesmoveatdifferentspeedsandindifferentdirections.Ouralgorithmquicklyadaptstothechangesintheenvironmentandgeneratescollision-freepathsfortheagents.

Inconclusion,ourproposedmulti-agentpathplanningalgorithmbasedondeepreinforcementlearningisshowntobeeffectiveandrobustinvariouspracticalscenarios,highlightingitspotentialforreal-worldapplications.Withfurtherdevelopmentandoptimization,ouralgorithmcanbeappliedtovariousreal-worldscenariosandprovidevaluablesolutionsformulti-agentpathplanningproblemsOnepotentialapplicationofourmulti-agentpathplanningalgorithmisinautonomousdriving.Withtheincreasingpopularityofself-drivingcars,ensuringsafeandefficientnavigationofmultipleautonomousvehiclesontheroadisbecomingacriticalchallenge.Ouralgorithmcanbeusedtogenerateoptimalpathsformultiplevehicles,takingintoaccounttheirindividualgoals,whileavoidingcollisions.

Anotherpossibleapplicationisinroboticswarmsforsearchandrescuemissions.Insuchscenarios,multiplerobotsneedtoco-operateandcollaboratetonavigatethroughunfamiliar,hazardousenvironmentstolocateandrescuesurvivors.Ouralgorithmcangeneratecollision-freepathsfortherobots,whilealsoadaptingtochangesintheenvironment,makingitidealforsuchapplications.

Overall,ourproposedalgorithmpresentsapracticalandefficientsolutionforthecomplexproblemofmulti-agentpathplanning,withpotentialapplicationsacrossvariousfields.Byleveragingthepowerofdeepreinforcementlearning

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論