版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃
摘要:多智能體系統(tǒng)中的路徑規(guī)劃問(wèn)題是現(xiàn)代機(jī)器人技術(shù)研究的重要課題。針對(duì)傳統(tǒng)路徑規(guī)劃技術(shù)因受環(huán)境地形限制、難以適應(yīng)復(fù)雜環(huán)境等問(wèn)題,在本文中,我們提出了一種基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃算法。首先,我們將問(wèn)題建模為馬爾可夫決策過(guò)程,并通過(guò)深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練智能體在不同狀態(tài)下的最佳策略。其次,我們提出了一種基于遺傳算法的策略集結(jié)構(gòu),通過(guò)對(duì)不同策略的組合和優(yōu)化,獲得了更為魯棒的路徑規(guī)劃結(jié)果。最后,我們?cè)诙喾N仿真環(huán)境下進(jìn)行實(shí)驗(yàn)驗(yàn)證,以證明所提出算法的有效性和魯棒性。實(shí)驗(yàn)結(jié)果表明,本文所提出的基于深度強(qiáng)化學(xué)習(xí)的多智能體路徑規(guī)劃算法可以在多智能體協(xié)同環(huán)境中快速、準(zhǔn)確地完成路徑規(guī)劃任務(wù)。
關(guān)鍵詞:路徑規(guī)劃;多智能體系統(tǒng);深度強(qiáng)化學(xué)習(xí);馬爾可夫決策過(guò)程;遺傳算法
Abstract:Thepathplanningprobleminmulti-agentsystemsisanimportantissueinmodernroboticsresearch.Inthispaper,weproposeamulti-agentpathplanningalgorithmbasedondeepreinforcementlearningtoaddressthelimitationsoftraditionalpathplanningtechniques,suchasenvironmentalterrainconstraintsanddifficultyinadaptingtocomplexenvironments.First,wemodeltheproblemasaMarkovdecisionprocessandtraintheagents'optimalpoliciesunderdifferentstatesbyusingdeepneuralnetworks.Secondly,weproposeastrategysetstructurebasedongeneticalgorithmstoobtainmorerobustpathplanningresultsthroughcombinationandoptimizationofdifferentstrategies.Finally,weconductexperimentalvalidationinmultiplesimulationenvironmentstodemonstratetheeffectivenessandrobustnessoftheproposedalgorithm.Theexperimentalresultsshowthatthemulti-agentpathplanningalgorithmbasedondeepreinforcementlearningproposedinthispapercanquicklyandaccuratelycompletepathplanningtasksinmulti-agentcollaborativeenvironments.
Keywords:pathplanning;multi-agentsystem;deepreinforcementlearning;Markovdecisionprocess;geneticalgorithInrecentyears,significantattentionhasbeengiventotheproblemofpathplanninginmulti-agentsystemsduetoitsessentialroleinvariousapplications,includingrobotics,automatedtransportationsystems,andswarmintelligence.Tosolvethisproblem,manyapproacheshavebeenproposed,suchasgeneticalgorithms,neuralnetworks,andreinforcementlearning.
Inthispaper,weproposedamulti-agentpathplanningalgorithmbasedondeepreinforcementlearning.Thealgorithmaimstofindanoptimalpathformultipleagentstoachieveacommongoalwhileavoidingcollisionswitheachotherandobstaclesintheenvironment.Toachievethis,ouralgorithmusesaMarkovdecisionprocess(MDP)tomodelthepathplanningproblemasasequentialdecision-makingprocess.Wethentrainadeepreinforcementlearningagentforeachagentinthesystem,whichlearnstomakeoptimaldecisionsbasedontheobservationsofitslocalenvironment.
Tovalidatetheperformanceofourproposedalgorithm,weconductedexperimentsinmultiplesimulationenvironmentswithdifferentnumbersofagentsandobstacleconfigurations.Theresultsshowthatouralgorithmcanquicklyandaccuratelycompletepathplanningtasksinmulti-agentcollaborativeenvironments.Morespecifically,comparedwithotherexistingapproaches,ouralgorithmshowshighersuccessrates,lowercollisionrates,andshorterplanningtimes.
Furthermore,wealsoconductedsensitivityanalysistoexaminetherobustnessandadaptabilityofouralgorithmunderdifferentscenarios.Theresultsshowthatouralgorithmcanmaintaingoodperformanceinvariousscenarioswithdifferentagentnumbers,obstacleshapes,andsizes.
Insummary,ourproposedmulti-agentpathplanningalgorithmbasedondeepreinforcementlearningprovidesapromisingsolutiontothecomplexandchallengingproblemofmulti-agentpathplanning.Theresultsdemonstratetheeffectivenessandrobustnessofouralgorithminvariouspracticalscenarios,highlightingitspotentialinreal-worldapplicationsFurthermore,ouralgorithmcanhandlescenarioswithvaryingagentnumbers.Wehavetestedouralgorithmwithupto20agents,andithasshowngoodperformance.Inscenarioswithalargenumberofagents,ouralgorithmeffectivelybalancestheexplorationversusexploitationtrade-off,leadingtoefficientandcollision-freepaths.
Ouralgorithmisalsorobusttodifferentobstacleshapesandsizes.Wehavetestedouralgorithmwithvariousobstacleshapes,suchascircles,rectangles,andirregularshapes.Ouralgorithmconsistentlygeneratedcollision-freepathsbyavoidingtheobstacles.Evenwhentheobstacleswereplacedincomplexarrangements,ouralgorithmwasstillabletofindsafeandefficientpathsfortheagents.
Moreover,ouralgorithmisreadilyapplicabletoscenarioswithdifferentroadnetworktopologies.Forexample,inscenarioswithmultiplenarrowpaths,ouralgorithmtendstoguidetheagentstowardslesscrowdedareastoavoidcongestion.Inscenarioswithopenareas,ouralgorithmenablesfastandefficientmovementsbyallowingtheagentstotakestraightpaths.
Inaddition,ouralgorithmcanhandlesituationswhereagentshavedifferentproperties,suchasdifferentspeedsorpriorities.Wehavetestedouralgorithminscenarioswithagentsofvaryingspeeds,andithasshowntheabilitytoeffectivelycoordinatethemovementsoftheagents.Similarly,inscenarioswithagentsofdifferentpriorities,ouralgorithmwasabletoassignprioritiesandgeneratecollision-freepathsaccordingly.
Finally,ouralgorithmcanhandlescenarioswithdynamicobstacles.Wehavetestedouralgorithminscenarioswhereobstaclesmoveatdifferentspeedsandindifferentdirections.Ouralgorithmquicklyadaptstothechangesintheenvironmentandgeneratescollision-freepathsfortheagents.
Inconclusion,ourproposedmulti-agentpathplanningalgorithmbasedondeepreinforcementlearningisshowntobeeffectiveandrobustinvariouspracticalscenarios,highlightingitspotentialforreal-worldapplications.Withfurtherdevelopmentandoptimization,ouralgorithmcanbeappliedtovariousreal-worldscenariosandprovidevaluablesolutionsformulti-agentpathplanningproblemsOnepotentialapplicationofourmulti-agentpathplanningalgorithmisinautonomousdriving.Withtheincreasingpopularityofself-drivingcars,ensuringsafeandefficientnavigationofmultipleautonomousvehiclesontheroadisbecomingacriticalchallenge.Ouralgorithmcanbeusedtogenerateoptimalpathsformultiplevehicles,takingintoaccounttheirindividualgoals,whileavoidingcollisions.
Anotherpossibleapplicationisinroboticswarmsforsearchandrescuemissions.Insuchscenarios,multiplerobotsneedtoco-operateandcollaboratetonavigatethroughunfamiliar,hazardousenvironmentstolocateandrescuesurvivors.Ouralgorithmcangeneratecollision-freepathsfortherobots,whilealsoadaptingtochangesintheenvironment,makingitidealforsuchapplications.
Overall,ourproposedalgorithmpresentsapracticalandefficientsolutionforthecomplexproblemofmulti-agentpathplanning,withpotentialapplicationsacrossvariousfields.Byleveragingthepowerofdeepreinforcementlearning
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽教師資格證數(shù)學(xué)試卷
- 2024年食品安全檢測(cè)服務(wù)合同檢測(cè)內(nèi)容描述與檢測(cè)標(biāo)準(zhǔn)
- 2025年度房地產(chǎn)信托委托擔(dān)保合同公證細(xì)則3篇
- 初中帶視頻講解數(shù)學(xué)試卷
- 2020-2025年中國(guó)船舶摩擦軌道行業(yè)投資研究分析及發(fā)展前景預(yù)測(cè)報(bào)告
- 《時(shí)滯耦合振子系統(tǒng)的分支分析和同步問(wèn)題》
- 《高中英語(yǔ)閱讀中的文化知識(shí)教學(xué)對(duì)學(xué)生思維品質(zhì)影響的研究》
- 2025年度甲方購(gòu)買乙方保險(xiǎn)服務(wù)合同6篇
- 《新型復(fù)合鐵鈦錳吸附劑的研制及其除砷效能與機(jī)制研究》
- 二零二五年度果品采購(gòu)與分銷合同2篇
- 劉寶紅采購(gòu)與供應(yīng)鏈管理
- 2025共團(tuán)永康市委下屬青少年綜合服務(wù)中心駐團(tuán)市委機(jī)關(guān)人員招聘2人(浙江)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 園林景觀施工方案
- 2025年中國(guó)服裝制造行業(yè)市場(chǎng)深度研究及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 2025年計(jì)算機(jī)二級(jí)WPS考試題目
- 部編人教版語(yǔ)文小學(xué)六年級(jí)下冊(cè)第四單元主講教材解讀(集體備課)
- 五年級(jí)上冊(cè)豎式計(jì)算題100道及答案
- EPC項(xiàng)目投標(biāo)人承包人工程經(jīng)濟(jì)的合理性分析、評(píng)價(jià)
- 社區(qū)電動(dòng)車棚新(擴(kuò))建及修建充電車棚施工方案(純方案-)
- 籍貫對(duì)照表完整版
- 建筑工程設(shè)計(jì)過(guò)程控制流程圖
評(píng)論
0/150
提交評(píng)論