版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知等比數(shù)列的公比,該數(shù)列前9項(xiàng)的乘積為1,則()A.8 B.16 C.32 D.642.已知兩條直線,,兩個(gè)平面,,下面說法正確的是()A. B. C. D.3.已知數(shù)列,滿足,若,則()A. B. C. D.4.已知函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則()A.既有極小值,也有極大值 B.有極小值,但無極大值C.有極大值,但無極小值 D.既無極小值,也無極大值5.已知圓內(nèi)接四邊形ABCD各邊的長(zhǎng)度分別為AB=5,BC=8,CD=3,DA=5,則AC的長(zhǎng)為()A.6 B.7 C.8 D.96.已知直線,,若,則()A.2 B. C. D.17.在等差數(shù)列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+28.已知向量,向量,則()A. B. C. D.9.若正項(xiàng)數(shù)列的前項(xiàng)和為,滿足,則()A. B. C. D.10.已知三棱錐中,,,則三棱錐的外接球的表面積為()A. B.4 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,則在方向上的投影為______.12.某校女子籃球隊(duì)7名運(yùn)動(dòng)員身高(單位:cm)分布的莖葉圖如圖,已知記錄的平均身高為175cm,但記錄中有一名運(yùn)動(dòng)員身高的末位數(shù)字不清晰,如果把其末位數(shù)字記為x,那么x的值為________.13.計(jì)算:________14.如圖,某人在高出海平面方米的山上P處,測(cè)得海平面上航標(biāo)A在正東方向,俯角為,航標(biāo)B在南偏東,俯角,且兩個(gè)航標(biāo)間的距離為200米,則__________米.15.如圖,在B處觀測(cè)到一貨船在北偏西方向上距離B點(diǎn)1千米的A處,碼頭C位于B的正東千米處,該貨船先由A朝著C碼頭C勻速行駛了5分鐘到達(dá)C,又沿著與AC垂直的方向以同樣的速度勻速行駛5分鐘后到達(dá)點(diǎn)D,此時(shí)該貨船到點(diǎn)B的距離是________千米.16.已知,則_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓C:(x-1)2(1)當(dāng)l經(jīng)過圓心C時(shí),求直線l的方程;(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線l的方程18.如圖所示,平面平面,四邊形為矩形,,點(diǎn)為的中點(diǎn).(1)若,求三棱錐的體積;(2)點(diǎn)為上任意一點(diǎn),在線段上是否存在點(diǎn),使得?若存在,確定點(diǎn)的位置,并加以證明;若不存在,請(qǐng)說明理由.19.已知數(shù)列滿足,,設(shè).(1)求,,;(2)證明:數(shù)列是等比數(shù)列,并求數(shù)列和的通項(xiàng)公式.20.設(shè)數(shù)列的前項(xiàng)和.已知.(1)求數(shù)列的通項(xiàng)公式;(2)是否對(duì)一切正整數(shù),有?說明理由.21.已知函數(shù).(1)求函數(shù)圖象的對(duì)稱軸方程;(2)若對(duì)于任意的,恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
先由數(shù)列前9項(xiàng)的乘積為1,結(jié)合等比數(shù)列的性質(zhì)得到,從而可求出結(jié)果.【詳解】由已知,又,所以,即,所以,,故選B.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)以及等比數(shù)列的基本量計(jì)算,熟記等比數(shù)列的性質(zhì)與通項(xiàng)公式即可,屬于常考題型.2、D【解析】
滿足每個(gè)選項(xiàng)的條件時(shí)能否找到反例推翻結(jié)論即可?!驹斀狻緼:當(dāng)m,n中至少有一條垂直交線才滿足。B:很明顯m,n還可以異面直線不平行。C:只有當(dāng)m垂直交線時(shí),否則不成立。故選:D【點(diǎn)睛】此題考查直線和平面位置關(guān)系,一般通過反例排除法即可解決,屬于較易題目。3、C【解析】
利用遞推公式計(jì)算出數(shù)列的前幾項(xiàng),找出數(shù)列的周期,然后利用周期性求出的值.【詳解】,且,,,,所以,,則數(shù)列是以為周期的周期數(shù)列,.故選:C.【點(diǎn)睛】本題考查利用數(shù)列遞推公式求數(shù)列中的項(xiàng),推導(dǎo)出數(shù)列的周期是解本題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.4、B【解析】由導(dǎo)函數(shù)圖象可知,在上為負(fù),在上非負(fù),在上遞減,在遞增,在處有極小值,無極大值,故選B.5、B【解析】
分別在△ABC和△ACD中用余弦定理解出AC,列方程解出cosD,得出AC.【詳解】在△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB×BCcosB=89﹣80cosB,在△ACD中,由余弦定理得AC2=CD2+AD2﹣2AD×CDcosD=34﹣30cosD,∴89﹣80cosB=34﹣30cosD,∵A+C=180°,∴cosB=﹣cosD,∴cosD,∴AC2=34﹣30×()=1.∴AC=2.故選B.【點(diǎn)睛】本題考查了余弦定理的應(yīng)用,三角形的解法,考查了圓內(nèi)接四邊形的性質(zhì)的應(yīng)用,屬于中檔題.6、D【解析】
當(dāng)為,為,若,則,由此求解即可【詳解】由題,因?yàn)?所以,即,故選:D【點(diǎn)睛】本題考查已知直線垂直求參數(shù)問題,屬于基礎(chǔ)題7、C【解析】
直接利用等差數(shù)列公式解方程組得到答案.【詳解】aaa1故答案選C【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題型.8、C【解析】
設(shè),根據(jù)系數(shù)對(duì)應(yīng)關(guān)系即可求解【詳解】設(shè),即,故選:C【點(diǎn)睛】本題考查向量共線的基本運(yùn)算,屬于基礎(chǔ)題9、A【解析】
利用,化簡(jiǎn),即可得到,令,所以,,令,所以原式為數(shù)列的前1000項(xiàng)和,求和即可得到答案?!驹斀狻慨?dāng)時(shí),解得,由于為正項(xiàng)數(shù)列,故,由,所以,由,可得①,所以②②—①可得,化簡(jiǎn)可得由于,所以,即,故為首項(xiàng)為1,公差為2的等差數(shù)列,則,令,所以,令所以原式故答案選A【點(diǎn)睛】本題主要考查數(shù)列通項(xiàng)公式與前項(xiàng)和的關(guān)系,以及利用裂項(xiàng)求數(shù)列的和,解題的關(guān)鍵是利用,求出數(shù)列的通項(xiàng)公式,有一定的綜合性。10、B【解析】
依據(jù)題中數(shù)據(jù),利用勾股定理可判斷出從而可得三棱錐各面都為直角三角形,進(jìn)而可知外接圓的直徑,即可求出三棱錐的外接球的表面積【詳解】如圖,因?yàn)?又,,從而可得三棱錐各面都為直角三角形,CD是三棱錐的外接球的直徑,在中,,,即,,故選B.【點(diǎn)睛】本題主要考查學(xué)生空間想象以及數(shù)學(xué)建模能力,能夠依據(jù)條件建立合適的模型是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由平面向量投影的定義可得出在方向上的投影為,從而可計(jì)算出結(jié)果.【詳解】設(shè)平面向量與的夾角為,則在方向上的投影為.故答案為:.【點(diǎn)睛】本題考查平面向量投影的計(jì)算,熟悉平面向量投影的定義是解題的關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.12、2【解析】
根據(jù)莖葉圖的數(shù)據(jù)和平均數(shù)的計(jì)算公式,列出方程,即可求解,得到答案.【詳解】由題意,可得,即,解得.【點(diǎn)睛】本題主要考查了莖葉圖的認(rèn)識(shí)和平均數(shù)的公式的應(yīng)用,其中解答中根據(jù)莖葉圖,準(zhǔn)確的讀取數(shù)據(jù),再根據(jù)數(shù)據(jù)的平均數(shù)的計(jì)算公式,列出方程求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、【解析】
用正弦、正切的誘導(dǎo)公式化簡(jiǎn)求值即可.【詳解】.【點(diǎn)睛】本題考查了正弦、正切的誘導(dǎo)公式,考查了特殊角的正弦值和正切值.14、1【解析】
根據(jù)題意利用方向坐標(biāo),根據(jù)三角形邊角關(guān)系,利用余弦定理列方程求出的值.【詳解】航標(biāo)在正東方向,俯角為,由題意得,.航標(biāo)在南偏東,俯角為,則有,.所以,;由余弦定理知,即,可求得(米.故答案為:1.【點(diǎn)睛】本題考查方向坐標(biāo)以及三角形邊角關(guān)系的應(yīng)用問題,考查余弦定理應(yīng)用問題,是中檔題.15、3【解析】
先在中,由余弦定理算出和,然后在中由余弦定理即可求出.【詳解】由題意可得,在中,所以由余弦定理得:即,所以因?yàn)樗运运栽谥杏校杭垂蚀鸢笧椋?【點(diǎn)睛】本題考查三角形的解法,余弦定理的應(yīng)用,是基本知識(shí)的考查.16、【解析】由題意可得:點(diǎn)睛:熟記同角三角函數(shù)關(guān)系式及誘導(dǎo)公式,特別是要注意公式中的符號(hào)問題;注意公式的變形應(yīng)用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.這是解題中常用到的變形,也是解決問題時(shí)簡(jiǎn)化解題過程的關(guān)鍵所在.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)已知圓C:(x-1)2(2)當(dāng)弦AB被點(diǎn)P平分時(shí),l⊥PC,直線l的方程為y-2=-118、(1);(2)存在,為中點(diǎn),證明見解析.【解析】
(1)先根據(jù)面積垂直的性質(zhì)得到平面;再由題中數(shù)據(jù),結(jié)合棱錐體積公式,即可求出結(jié)果;(2)先由線面垂直的性質(zhì)得到為中點(diǎn)時(shí),有.再給出證明:取中點(diǎn),連接,,,由線面垂直的判定定理,以及面面垂直的性質(zhì)定理,證明平面,再由線面垂直的性質(zhì)定理,即可得出結(jié)果.【詳解】(1)因?yàn)樗倪呅螢榫匦?,所以,又平面平面,所以平面;又,所以,因此三棱錐的體積為:;(2)當(dāng)為中點(diǎn)時(shí),有.證明如下:取中點(diǎn),連接,,.∵為的中點(diǎn),為的中點(diǎn),∴,又∵,∴,∴四點(diǎn)共面.∵平面平面,平面平面,平面,,∴平面,又平面,∴,∵,為的中點(diǎn),∴,又,∴平面,又平面,∴,即.【點(diǎn)睛】本題主要考查求棱錐的體積,以及補(bǔ)全線線垂直的條件,熟記棱錐體積公式,以及線面垂直、面面垂直的判定定理與性質(zhì)定理即可,屬于常考題型.19、(1),,;(2)證明見詳解,,.【解析】
(1)根據(jù)遞推公式,賦值求解即可;(2)利用定義,求證為定值即可,由數(shù)列通項(xiàng)公式即可求得和.【詳解】(1)由條件可得,將代入得,,而,所以.將代入得,所以.從而,,.(2)由條件可得,即,,又,所以是首項(xiàng)為1,公比為3的等比數(shù)列,.因?yàn)椋?【點(diǎn)睛】本題考查利用遞推關(guān)系求數(shù)列某項(xiàng)的值,以及利用數(shù)列定義證明等比數(shù)列,及求通項(xiàng)公式,是數(shù)列綜合基礎(chǔ)題.20、(1);(2)對(duì)一切正整數(shù),有.【解析】
(1)運(yùn)用數(shù)列的遞推式,結(jié)合等差數(shù)列的定義和通項(xiàng)公式,可得所求;(2)對(duì)一切正整數(shù)n,有,考慮當(dāng)時(shí),,再由裂項(xiàng)相消求和,即可得證。【詳解】(1)當(dāng)時(shí),兩式做差得,,當(dāng)時(shí),上式顯然成立,。(2)證明:當(dāng)時(shí),可得由可得即有<則當(dāng)時(shí),不等式成立。檢驗(yàn)時(shí),不等式也成立,綜上對(duì)一切正整數(shù)n,有?!军c(diǎn)睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告營(yíng)銷合同范本
- 車輛押借款合同
- 網(wǎng)簽版建筑工程合同模板
- 知識(shí)產(chǎn)權(quán)(TPR)保護(hù)框架協(xié)議
- 2024年有關(guān)藏品的協(xié)議書范本
- 大學(xué)生靈活就業(yè)協(xié)議書范本
- 工業(yè)用途商品購買合同
- 房地產(chǎn)租賃合同范本合輯
- 技術(shù)服務(wù)合作協(xié)議書范本
- 2024年貨架采購合同
- 養(yǎng)生酒推廣方案
- 拳擊館計(jì)劃書
- 2023-2024學(xué)年湖南省懷化市高一(上)期中數(shù)學(xué)試卷(含解析)
- 課文明如廁班會(huì)
- 場(chǎng)平土石方工程施工組織設(shè)計(jì)1
- 鍋爐安全:風(fēng)險(xiǎn)點(diǎn)防范、應(yīng)急措施與安全須知
- 醫(yī)院藥品儲(chǔ)備情況評(píng)估報(bào)告
- 維修服務(wù)協(xié)調(diào)措施
- 小池五線譜合唱譜
- 爐窯冬季施工方案
- 中建高大模板專家論證施工方案
評(píng)論
0/150
提交評(píng)論