版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與軸正半軸重合,終邊經(jīng)過點(diǎn),則()A. B. C. D.2.《九章算術(shù)》卷第五《商功》中,有問題“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高一丈.問積幾何?”,意思是:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬丈,長丈;上棱長丈,無寬,高丈(如圖).問它的體積是多少?”這個(gè)問題的答案是()A.立方丈 B.立方丈C.立方丈 D.立方丈3.已知函數(shù),則函數(shù)的最小正周期為()A. B. C. D.4.已知{an}是等差數(shù)列,且a2+a5+a8+a11=48,則a6+a7=()A.12 B.16 C.20 D.245.各棱長均為的三棱錐的表面積為()A. B. C. D.6.設(shè)函數(shù),則是()A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)7.某象棋俱樂部有隊(duì)員5人,其中女隊(duì)員2人,現(xiàn)隨機(jī)選派2人參加一個(gè)象棋比賽,則選出的2人中恰有1人是女隊(duì)員的概率為()A. B. C. D.8.圓與圓的位置關(guān)系是()A.內(nèi)切 B.外切 C.相交 D.相離9.如果a<b<0,那么下列不等式成立的是()A. B. C. D.10.執(zhí)行如圖所示的程序框圖,輸出的s值為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若數(shù)列滿足,則_____.12.已知數(shù)列是正項(xiàng)數(shù)列,是數(shù)列的前項(xiàng)和,且滿足.若,是數(shù)列的前項(xiàng)和,則_______.13.若,其中是第二象限角,則____.14.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為.若圓柱的一個(gè)底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點(diǎn),另一個(gè)底面的圓心為四棱錐底面的中心,則該圓柱的體積為__________.15.在等比數(shù)列中,,的值為________16.圓與圓的公共弦長為______________。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某校200名學(xué)生的數(shù)學(xué)期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是.(1)求圖中m的值;(2)根據(jù)頻率分布直方圖,估計(jì)這200名學(xué)生的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表)和中位數(shù)(四舍五入取整數(shù));(3)若這200名學(xué)生的數(shù)學(xué)成績中,某些分?jǐn)?shù)段的人數(shù)x與英語成績相應(yīng)分?jǐn)?shù)段的人數(shù)y之比如下表所示,求英語成績?cè)诘娜藬?shù).分?jǐn)?shù)段[70,80)[80,90)[90,100)[100,110)[110,120)x:y1:22:16:51:21:118.已知向量,,.(1)求函數(shù)的解析式及在區(qū)間上的值域;(2)求滿足不等式的x的集合.19.在中,三個(gè)內(nèi)角所對(duì)的邊分別為,滿足.(1)求角的大?。唬?)若,求,的值.(其中)20.如圖,等腰梯形中,,,,取中點(diǎn),連接,把三角形沿折起,使得點(diǎn)在底面上的射影落在上,設(shè)為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.21.已知圓的圓心在軸上,且經(jīng)過點(diǎn),.(Ⅰ)求線段AB的垂直平分線方程;(Ⅱ)求圓的標(biāo)準(zhǔn)方程;(Ⅲ)過點(diǎn)的直線與圓相交于、兩點(diǎn),且,求直線的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
先由角的終邊過點(diǎn),求出,再由二倍角公式,即可得出結(jié)果.【詳解】因?yàn)榻堑捻旤c(diǎn)在坐標(biāo)原點(diǎn),始邊與軸正半軸重合,終邊經(jīng)過點(diǎn),所以,因此.故選B【點(diǎn)睛】本題主要考查三角函數(shù)的定義,以及二倍角公式,熟記三角函數(shù)的定義與二倍角公式即可,屬于常考題型.2、A【解析】過點(diǎn)分別作平面和平面垂直于底面,所以幾何體的體積分為三部分中間是直三棱柱,兩邊是兩個(gè)一樣的四棱錐,所以立方丈,故選A.3、D【解析】
根據(jù)二倍角公式先化簡,再根據(jù)即可?!驹斀狻坑深}意得,所以周期為.所以選擇D【點(diǎn)睛】本題主要考查了二倍角公式;??嫉亩督枪接姓摇⒂嘞?、正切。屬于基礎(chǔ)題。4、D【解析】由等差數(shù)列的性質(zhì)可得,則,故選D.5、C【解析】
判斷三棱錐是正四面體,它的表面積就是四個(gè)三角形的面積,求出一個(gè)三角形的面積即可求解本題.【詳解】由題意可知三棱錐是正四面體,各個(gè)三角形的邊長為a,三棱錐的表面積就是四個(gè)全等三角形的面積,即,
所以C選項(xiàng)是正確的.【點(diǎn)睛】本題考查棱錐的表面積,考查空間想象能力,計(jì)算能力,是基礎(chǔ)題.6、D【解析】函數(shù),化簡可得f(x)=–cos2x,∴f(x)是偶函數(shù).最小正周期T==π,∴f(x)最小正周期為π的偶函數(shù).故選D.7、B【解析】
直接利用概率公式計(jì)算得到答案.【詳解】故選:【點(diǎn)睛】本題考查了概率的計(jì)算,屬于簡單題.8、B【解析】
由兩圓的圓心距及半徑的關(guān)系求解即可得解.【詳解】解:由圓,圓,即,所以圓的圓心坐標(biāo)為,圓的圓心坐標(biāo)為,兩圓半徑,則圓心距,即兩圓外切,故選:B.【點(diǎn)睛】本題考查了兩圓的位置關(guān)系的判斷,屬基礎(chǔ)題.9、D【解析】對(duì)于選項(xiàng)A,因?yàn)椋?,所以即,所以選項(xiàng)A錯(cuò)誤;對(duì)于選項(xiàng)B,,所以,選項(xiàng)B錯(cuò)誤;對(duì)于選項(xiàng)C,,當(dāng)時(shí),,當(dāng),,故選項(xiàng)C錯(cuò)誤;對(duì)于選項(xiàng)D,,所以,又,所以,所以,選D.10、B【解析】分析:初始化數(shù)值,執(zhí)行循環(huán)結(jié)構(gòu),判斷條件是否成立,詳解:初始化數(shù)值循環(huán)結(jié)果執(zhí)行如下:第一次:不成立;第二次:成立,循環(huán)結(jié)束,輸出,故選B.點(diǎn)睛:此題考查循環(huán)結(jié)構(gòu)型程序框圖,解決此類問題的關(guān)鍵在于:第一,要確定是利用當(dāng)型還是直到型循環(huán)結(jié)構(gòu);第二,要準(zhǔn)確表示累計(jì)變量;第三,要注意從哪一步開始循環(huán),弄清進(jìn)入或終止的循環(huán)條件、循環(huán)次數(shù).二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由遞推公式逐步求出.【詳解】.故答案為:【點(diǎn)睛】本題考查數(shù)列的遞推公式,屬于基礎(chǔ)題.12、【解析】
利用將變?yōu)?,整理發(fā)現(xiàn)數(shù)列{}為等差數(shù)列,求出,進(jìn)一步可以求出,再將,代入,發(fā)現(xiàn)可以裂項(xiàng)求的前99項(xiàng)和。【詳解】當(dāng)時(shí),符合,當(dāng)時(shí),符合,【點(diǎn)睛】一般公式的使用是將變?yōu)?,而本題是將變?yōu)?,給后面的整理帶來方便。先求,再求,再求,一切都順其自然。13、【解析】
首先要用誘導(dǎo)公式得到角的正弦值,根據(jù)角是第二象限的角得到角的余弦值,再用誘導(dǎo)公式即可得到結(jié)果.【詳解】解:,又是第二象限角故,故答案為.【點(diǎn)睛】本題考查同角的三角函數(shù)的關(guān)系,本題解題的關(guān)鍵是誘導(dǎo)公式的應(yīng)用,熟練應(yīng)用誘導(dǎo)公式是解決三角函數(shù)問題的必備技能,屬于基礎(chǔ)題.14、.【解析】
根據(jù)棱錐的結(jié)構(gòu)特點(diǎn),確定所求的圓柱的高和底面半徑.【詳解】由題意四棱錐的底面是邊長為的正方形,側(cè)棱長均為,借助勾股定理,可知四棱錐的高為,.若圓柱的一個(gè)底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點(diǎn),圓柱的底面半徑為,一個(gè)底面的圓心為四棱錐底面的中心,故圓柱的高為,故圓柱的體積為.【點(diǎn)睛】本題主要考查了圓柱與四棱錐的組合,考查了空間想象力,屬于基礎(chǔ)題.15、【解析】
根據(jù)等比數(shù)列的性質(zhì),可得,即可求解.【詳解】由題意,根據(jù)等比數(shù)列的性質(zhì),可得,解得.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的性質(zhì)的應(yīng)用,其中解答熟記等比數(shù)列的性質(zhì),準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
利用兩圓一般方程求兩圓公共弦方程,求其中一圓到公共弦的距離,利用直線被圓截得的弦長公式可得所求.【詳解】由兩圓方程相減得兩圓公共弦方程為,即,圓化為,圓心到直線的距離為1,所以兩圓公共弦長為,故答案為.【點(diǎn)睛】本題考查兩圓位置關(guān)系,直線與圓的位置關(guān)系,考查運(yùn)算能力,屬于基本題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)平均分為,中位數(shù)為(3)140人【解析】
(1)由題得,解方程即得解;(2)利用頻率分布直方圖中平均數(shù)和中位數(shù)的計(jì)算公式估計(jì)這200名學(xué)生的平均分和中位數(shù);(3)分別計(jì)算每一段的人數(shù)即得解.【詳解】(1)由,解得.(2)頻率分布直方圖中每一個(gè)小矩形的面積乘以底邊中點(diǎn)的橫坐標(biāo)之和即為平均數(shù),即估計(jì)平均數(shù)為.設(shè)中位數(shù)為,則解得(3)由頻率分布直方圖可求出這200名學(xué)生的數(shù)學(xué)成績?cè)?,,的分別有60人,40人,10人,按照表中給的比例,則英語成績?cè)冢?,的分別有50人,80人,10人,所以英語成績?cè)诘挠?40人.【點(diǎn)睛】本題主要考查頻率分布直方圖的性質(zhì),考查頻率分布直方圖中平均數(shù)和中位數(shù)的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.18、(1)值域?yàn)椋?)【解析】
(1)由向量,,利用數(shù)量積運(yùn)算得到;由,得到,利用整體思想轉(zhuǎn)化為正弦函數(shù)求值域.(2)不等式,轉(zhuǎn)化為,利用整體思想,轉(zhuǎn)化為三角不等式,利用單位圓或正弦函數(shù)的圖象求解.【詳解】(1)因?yàn)?,,所以.因?yàn)?,所以,所以,所以,所以在區(qū)間上的值域?yàn)椋?)由,得,即.所以,解得,不等式的解集為.【點(diǎn)睛】本題主要考查了向量與三角函數(shù)的綜合應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.19、(1);(2)4,6【解析】
(1)已知等式利用正弦定理化簡,整理后利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡,求出的值,即可確定出的度數(shù);(2)根據(jù)平面向量數(shù)量積的運(yùn)算法則計(jì)算得到一個(gè)等式,記作①,把的度數(shù)代入求出的值,記作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相應(yīng)的值代入,開方求出的值,由②③可知與為一個(gè)一元二次方程的兩個(gè)解,求出方程的解,根據(jù)大于,可得出,的值.【詳解】(1)已知等式,利用正弦定理化簡得,整理得,即,,則.(2)由,得,①又由(1),②由余弦定理得,將及①代入得,,,③由②③可知與為一個(gè)一元二次方程的兩個(gè)根,解此方程,并由大于,可得.【點(diǎn)睛】以三角形和平面向量為載體,三角恒等變換為手段,正弦定理、余弦定理為工具,對(duì)三角函數(shù)及解三角形進(jìn)行考查是近幾年高考考查的一類熱點(diǎn)問題,一般難度不大,但綜合性較強(qiáng).解答這類問題,兩角和與差的正余弦公式、誘導(dǎo)公式以及二倍角公式,一定要熟練掌握并靈活應(yīng)用,特別是二倍角公式的各種變化形式要熟記于心.20、(1)見解析;(2).【解析】
(1)取的中點(diǎn),取的中點(diǎn),連接、、、、,可知、均為等邊三角形,可證明出平面,從而得出,再證明出四邊形為平行四邊形,可得出,由等腰三角形三線合一的性質(zhì)可得,從而可得出,再利用線面垂直的判定定理可證明出平面;(2)過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),連接,證明出平面,可得知二面角的平面角為,計(jì)算出直角三角形三邊邊長,即可求出,即為所求.【詳解】(1)如下圖所示,取的中點(diǎn),取的中點(diǎn),連接、、、、,在等腰梯形中,,,,為的中點(diǎn),所以,,又,則,為等邊三角形,同理可知為等邊三角形,為的中點(diǎn),,,,平面,平面,,由于和是邊長相等的等邊三角形,且為的中點(diǎn),,為的中點(diǎn),.在等腰梯形中,且,則四邊形為平行四邊形,、分別為、的中點(diǎn),且,為的中點(diǎn),且,則四邊形為平行四邊形,,,,平面;(2)過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),連接,由于點(diǎn)在平面內(nèi)的射影點(diǎn)在上,則平面平面,由(1)知,,又平面平面,平面,平面,平面,,,,平面,平面,,所以,二面角的平面角為,在中,,,,,,因此,二面角的余弦值為.【點(diǎn)睛】本題主要考查線面垂直的判定以及二面角的求法,解題的關(guān)鍵就是找出二面角的平面角,通過解三角形來求解二面角,考查推理能力與計(jì)算能力,屬于中等題.21、(Ⅰ);(Ⅱ);(Ⅲ)或.【解析】
(Ⅰ)利用垂直平分關(guān)系得到斜率及中點(diǎn),從而得到結(jié)果;(Ⅱ)設(shè)圓的標(biāo)準(zhǔn)方程為,結(jié)合第一問可得結(jié)果;(Ⅲ)由題意可知:圓心到直線的距離為1,分類討論可得結(jié)果.【詳解】解:(Ⅰ)設(shè)的中點(diǎn)為,則.由圓的性質(zhì),得,所以,得.所以線段的垂直平分線的方程是.(II)設(shè)圓的標(biāo)準(zhǔn)方程為,其中,半徑為().由圓的性質(zhì),圓心在直線上,化簡得.所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度婚慶酒店婚禮場地租賃及婚慶活動(dòng)執(zhí)行合同
- 2025版光伏電站余熱回收利用承包合同
- 2025年度互聯(lián)網(wǎng)金融服務(wù)合同意向協(xié)議書
- 2025年度股權(quán)質(zhì)押擔(dān)保法律援助合同
- 2025年度股權(quán)投資風(fēng)險(xiǎn)控制與保障服務(wù)合同范本
- 2025年光伏電站環(huán)保設(shè)施建設(shè)與運(yùn)維合同
- 2025年度股權(quán)代持協(xié)議書:家族企業(yè)股份代持合同范本
- 2025年上海辦公室裝修合同模板(三篇)
- 2025年度瓷磚市場推廣活動(dòng)采購合同樣本4篇
- 二零二五年度財(cái)務(wù)咨詢服務(wù)與財(cái)務(wù)咨詢顧問派遣合同3篇
- 搞笑小品劇本《大城小事》臺(tái)詞完整版
- 《大模型原理與技術(shù)》全套教學(xué)課件
- 2023年護(hù)理人員分層培訓(xùn)、考核計(jì)劃表
- 《銷售培訓(xùn)實(shí)例》課件
- 2025年四川省新高考八省適應(yīng)性聯(lián)考模擬演練(二)地理試卷(含答案詳解)
- 【經(jīng)典文獻(xiàn)】《矛盾論》全文
- Vue3系統(tǒng)入門與項(xiàng)目實(shí)戰(zhàn)
- 2024年寧夏回族自治區(qū)中考英語試題含解析
- 光伏發(fā)電項(xiàng)目試驗(yàn)檢測(cè)計(jì)劃
- 房屋建筑工程投標(biāo)方案(技術(shù)方案)
- 2025年高考語文作文備考:議論文萬能模板
評(píng)論
0/150
提交評(píng)論