版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.數(shù)列的通項公式,則()A. B. C.或 D.不存在2.右圖中,小方格是邊長為1的正方形,圖中粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.3.已知等比數(shù)列{an}中,a3?a13=20,a6=4,則a10的值是()A.16 B.14 C.6 D.54.表示不超過的最大整數(shù),設函數(shù),則函數(shù)的值域為()A. B. C. D.5.在計算機BASIC語言中,函數(shù)表示整數(shù)a被整數(shù)b除所得的余數(shù),如.用下面的程序框圖,如果輸入的,,那么輸出的結果是()A.7 B.21 C.35 D.496.若偶函數(shù)在上是增函數(shù),則()A. B.C. D.不能確定7.在中,角所對的邊分邊為,已知,則此三角形的解的情況是()A.有一解 B.有兩解 C.無解 D.有解但解的個數(shù)不確定8.為了從甲、乙兩組中選一組參加“喜迎國慶共建小康”知識競賽活動.班主任老師將兩組最近的次測試的成績進行統(tǒng)計,得到如圖所示的莖葉圖.若甲、乙兩組的平均成績分別是.則下列說法正確的是()A.,乙組比甲組成績穩(wěn)定,應選乙組參加比賽B.,甲組比乙組成績穩(wěn)定.應選甲組參加比賽C.,甲組比乙組成績穩(wěn)定.應選甲組參加比賽D.,乙組比甲組成績穩(wěn)定,應選乙組參加比賽9.在明朝程大位《算法統(tǒng)宗》中,有這樣一首歌謠,叫浮屠增級歌:遠看巍巍塔七層,紅光點點倍加增;共燈三百八十一,請問層三幾盞燈.這首古詩描述的浮屠,現(xiàn)稱寶塔.本浮屠增級歌意思是:有一座7層寶塔,每層懸掛的紅燈數(shù)是上一層的2倍,寶塔中共有燈381盞,問這個寶塔第3層燈的盞數(shù)有()A. B. C. D.10.在中,若,,,則()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓截直線所得線段的長度是,則圓M與圓的位置關系是_________.12.函數(shù),的遞增區(qū)間為______.13.在ΔABC中,角A,B,C所對的對邊分別為a,b,c,若A=30°,a=7,b=214.在公比為q的正項等比數(shù)列{an}中,a3=9,則當3a2+a4取得最小值時,=_____.15.甲、乙兩人下棋,兩人下成和棋的概率是,甲獲勝的概率是,則甲不輸?shù)母怕蕿開_______.16.方程組對應的增廣矩陣為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,求的值.18.某超市為了解端午節(jié)期間粽子的銷售量,對其所在銷售范圍內(nèi)的1000名消費者在端午節(jié)期間的粽子購買量(單位:g)進行了問卷調查,得到如圖所示的頻率分布直方圖.(Ⅰ)求頻率分布直方圖中a的值;(Ⅱ)求這1000名消費者的棕子購買量在600g~1400g的人數(shù);(Ⅲ)求這1000名消費者的人均粽子購買量(頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表).19.在平面直角坐標系中,已知點與兩個定點,的距離之比為.(1)求點的坐標所滿足的關系式;(2)求面積的最大值;(3)若恒成立,求實數(shù)的取值范圍.20.已知圓,直線.圓與軸交于兩點,是圓上不同于的一動點,所在直線分別與交于.(1)當時,求以為直徑的圓的方程;(2)證明:以為直徑的圓截軸所得弦長為定值.21.智能手機的出現(xiàn),改變了我們的生活,同時也占用了我們大量的學習時間.某市教育機構從名手機使用者中隨機抽取名,得到每天使用手機時間(單位:分鐘)的頻率分布直方圖(如圖所示),其分組是:,.(1)根據(jù)頻率分布直方圖,估計這名手機使用者中使用時間的中位數(shù)是多少分鐘?(精確到整數(shù))(2)估計手機使用者平均每天使用手機多少分鐘?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)(3)在抽取的名手機使用者中在和中按比例分別抽取人和人組成研究小組,然后再從研究小組中選出名組長.求這名組長分別選自和的概率是多少?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
因為趨于無窮大,故,分離常數(shù)即可得出極限.【詳解】解:因為的通項公式,要求,即求故選:B【點睛】本題考查數(shù)列的極限,解答的關鍵是消去趨于無窮大的式子.2、D【解析】
由三視圖可知,該幾何體為棱長為2的正方體截去一個三棱錐,由正方體的體積減去三棱錐的體積求解.【詳解】根據(jù)三視圖,可知原幾何體如下圖所示,該幾何體為棱長為的正方體截去一個三棱錐,則該幾何體的體積為.故選:D.【點睛】本題考查了幾何體三視圖的應用問題以及幾何體體積的求法,關鍵是根據(jù)三視圖還原原來的空間幾何體,是中檔題.3、D【解析】
用等比數(shù)列的性質求解.【詳解】∵是等比數(shù)列,∴,∴.故選D.【點睛】本題考查等比數(shù)列的性質,靈活運用等比數(shù)列的性質可以很快速地求解等比數(shù)列的問題.在等比數(shù)列中,正整數(shù)滿足,則,特別地若,則.4、D【解析】
由已知可證是奇函數(shù),是互為相反數(shù),對是否為正數(shù)分類討論,即可求解.【詳解】的定義域為,,,是奇函數(shù),設,若是整數(shù),則,若不是整數(shù),則.的值域是.故選:D.【點睛】本題考查函數(shù)性質的應用,考查對新函數(shù)定義的理解,考查分類討論思想,屬于中檔題.5、B【解析】
模擬執(zhí)行循環(huán)體,即可得到輸出值.【詳解】,,,,繼續(xù)執(zhí)行得,,繼續(xù)執(zhí)行得,,結束循環(huán),輸出.故選:B.【點睛】本題考查循環(huán)體的執(zhí)行,屬程序框圖基礎題.6、B【解析】
根據(jù)偶函數(shù)性質與冪函數(shù)性質可得.【詳解】偶函數(shù)在上是增函數(shù),則它在上是減函數(shù),所以.故選:B.【點睛】本題考查冪函數(shù)的性質,考查偶函數(shù)性質,屬于基礎題.7、C【解析】由三角形正弦定理可知無解,所以三角形無解,選C.8、D【解析】
由莖葉圖數(shù)據(jù)分別計算兩組的平均數(shù);根據(jù)數(shù)據(jù)分布特點可知乙組成績更穩(wěn)定;由平均數(shù)和穩(wěn)定性可知應選乙組參賽.【詳解】;乙組的數(shù)據(jù)集中在平均數(shù)附近乙組成績更穩(wěn)定應選乙組參加比賽本題正確選項:【點睛】本題考查莖葉圖的相關知識,涉及到平均數(shù)的計算、數(shù)據(jù)穩(wěn)定性的估計等知識,屬于基礎題.9、C【解析】
先根據(jù)等比數(shù)列的求和公式求出首項,再根據(jù)通項公式求解.【詳解】從第1層到塔頂?shù)?層,每層的燈數(shù)構成一個等比數(shù)列,公比為,前7項的和為381,則,得第一層,則第三層,故選【點睛】本題考查等比數(shù)列的應用,關鍵在于理解題意.10、A【解析】
利用正弦定理列出關系式,把與代入得出與的關系式,再與已知等式聯(lián)立求出即可.【詳解】∵在中,,,,∴由正弦定理得:,即,聯(lián)立解得:.故選:A.【點睛】本題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關鍵,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、相交【解析】
根據(jù)直線與圓相交的弦長公式,求出的值,結合兩圓的位置關系進行判斷即可.【詳解】解:圓的標準方程為,則圓心為,半徑,圓心到直線的距離,圓截直線所得線段的長度是,即,,則圓心為,半徑,圓的圓心為,半徑,則,,,,即兩個圓相交.故答案為:相交.【點睛】本題主要考查直線和圓相交的應用,以及兩圓位置關系的判斷,根據(jù)相交弦長公式求出的值是解決本題的關鍵.12、[0,](開區(qū)間也行)【解析】
根據(jù)正弦函數(shù)的單調遞增區(qū)間,以及題中條件,即可求出結果.【詳解】由得:,又,所以函數(shù),的遞增區(qū)間為.故答案為【點睛】本題主要考查正弦型函數(shù)的單調區(qū)間,熟記正弦函數(shù)的單調區(qū)間即可,屬于??碱}型.13、32或【解析】
由余弦定理求出c,再利用面積公式即可得到答案。【詳解】由于在ΔABC中,A=30°,a=7,b=23,根據(jù)余弦定理可得:a2=b所以當c=1時,ΔABC的面積S=12bcsinA=32故ΔABC的面積等于32或【點睛】本題考查余弦定理與面積公式在三角形中的應用,屬于中檔題。14、【解析】
利用等比數(shù)列的性質,結合基本不等式等號成立的條件,求得公比,由此求得的值.【詳解】∵在公比為q的正項等比數(shù)列{an}中,a3=9,根據(jù)等比數(shù)列的性質和基本不等式得,當且僅當,即,即q時,3a2+a4取得最小值,∴l(xiāng)og3q=log3.故答案為:【點睛】本小題主要考查等比數(shù)列的性質,考查基本不等式的運用,屬于基礎題.15、【解析】甲、乙兩人下棋,只有三種結果,甲獲勝,乙獲勝,和棋;甲不輸,即甲獲勝或和棋,甲不輸?shù)母怕蕿?6、【解析】
根據(jù)增廣矩陣的概念求解即可.【詳解】方程組對應的增廣矩陣為,故答案為:.【點睛】本題考查增廣矩陣的概念,是基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、3【解析】
利用兩角和的正切公式化簡,求得的值,根據(jù)誘導公式求得的值.【詳解】由得.將代入上式,得,解得.于是,所以.【點睛】本小題主要考查兩角和的正切公式、誘導公式,屬于基礎題.18、(Ⅰ)a=0.1(Ⅱ)2(Ⅲ)1208g【解析】
(Ⅰ)由頻率分布直方圖的性質,列出方程,即可求解得值;(Ⅱ)先求出粽子購買量在的頻率,由此能求出這1000名消費者的粽子購買量在的人數(shù);(Ⅲ)由頻率分布直方圖能求出1000名消費者的人均購買粽子購買量【詳解】(Ⅰ)由頻率分布直方圖的性質,可得(0.0002+0.00055+a+0.0005+0.00025)×400=1,解得a=0.1.(Ⅱ)∵粽子購買量在600g~1400g的頻率為:(0.00055+0.1)×400=0.62,∴這1000名消費者的棕子購買量在600g~1400g的人數(shù)為:0.62×1000=2.(Ⅲ)由頻率分布直方圖得這1000名消費者的人均粽子購買量為:(400×0.0002+800×0.00055+1200×0.1+1600×0.0005+2000×0.00025)×400=1208g.【點睛】本題主要考查了頻率、頻數(shù)、以及頻率分布直方圖的應用,其中解答中熟記頻率分布直方圖的性質是解答此類問題的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.19、(1)(2)3;(3)【解析】
(1)根據(jù)題意,結合兩點間距離公式,可以得到等式,化簡后得到點的坐標所滿足的關系式;(2)設是曲線上任一點,求出的表達式,結合的取值范圍,可以求出面積的最大值;(3)恒成立,則恒成立.設,當它與圓相切時,取得最大和最小值,利用點到直線距離公式,可以求出取得最大和最小值,最后可以求出實數(shù)的取值范圍.【詳解】(1)設的坐標是,由,得,化簡得.(2)由(1)得,點在以為圓心,為半徑的圓上.設是曲線上任一點,則,又,故的最大值為:.(3)由(1)得:圓的方程是若恒成立,則恒成立.設,當它與圓相切時,取得最大和最小值,由得:,,故當時,原不等式恒成立.【點睛】本題考查了求點的軌跡方程,考查了直線與圓的位置關系,考查了求三角形面積最大值問題,考查了數(shù)學運算能力.20、(1);(2)證明見解析.【解析】
(1)討論點的位置,根據(jù)直線的方程,直線的方程分別與直線方程聯(lián)立,得出的坐標,進而得出圓心坐標以及半徑,即可得出該圓的方程;(2)討論點的位置,根據(jù)直角三角形的邊角關系得出的坐標,進而得出圓心坐標以及半徑,再由圓的弦長公式化簡即可證明.【詳解】(1)由圓的方程可知,①當點在第一象限時,如下圖所示當時,,所以直線的方程為由,解得直線的方程為由,解得則的中點坐標為,所以以為直徑的圓的方程為②當點在第四象限時,如下圖所示當時,,所以直線的方程為由,解得直線的方程為由,解得則的中點坐標為,所以以為直徑的圓的方程為綜上,以為直徑的圓的方程為(2)①當點在圓上半圓運動時,取直線交軸于點,如下圖所示設,則則以為直徑的圓的圓心坐標為,半徑所以以為直徑的圓截軸所得弦長為②當點在圓下半圓運動時,取直線交軸于點,如下圖所示設,則則以為直徑的圓的圓心坐標為,半徑所以以為直徑的圓截軸所得弦長為綜上,以為直徑的圓截軸所得弦長為定值.【點睛】本題主要考查了求圓的方程以及圓的弦長公式的應用,屬于中檔題.21、(1)分鐘.(2)58分鐘;(3)【解析】
(1)根據(jù)中位數(shù)將頻率二等分可直接求得結果;(2)每組數(shù)據(jù)中間值與對應小矩形的面積乘積的總和即為平均數(shù);(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度外國留學生實習項目聘用及支持合同
- 2025年房屋檢測評估合同樣本
- 2025年抵押權義務債權借款合同
- 電影投資制作合同
- 服裝專賣店裝修合同
- 藥材采購合同
- 企業(yè)自然語言處理技術研發(fā)合同
- 無人機航拍作業(yè)安全合同協(xié)議
- 企業(yè)資產(chǎn)管理服務合同
- 環(huán)保行業(yè)廢棄物處理免責合同
- 洛奇化石復原腳本
- 人教版三年級上冊豎式計算練習300題及答案
- 【“凡爾賽”網(wǎng)絡流行語的形成及傳播研究11000字(論文)】
- 建筑工程施工安全管理思路及措施
- 麻痹性腸梗阻學習課件
- 領導干部的情緒管理教學課件
- 初中英語-Unit2 My dream job(writing)教學課件設計
- 供貨方案及時間計劃安排
- 唐山動物園景觀規(guī)劃設計方案
- 中國版梅尼埃病診斷指南解讀
- 創(chuàng)業(yè)投資管理知到章節(jié)答案智慧樹2023年武漢科技大學
評論
0/150
提交評論