廣東省廣州市番禺區(qū)番禺中學(xué)2023年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
廣東省廣州市番禺區(qū)番禺中學(xué)2023年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
廣東省廣州市番禺區(qū)番禺中學(xué)2023年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
廣東省廣州市番禺區(qū)番禺中學(xué)2023年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
廣東省廣州市番禺區(qū)番禺中學(xué)2023年高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù),若,,則()A. B.2 C. D.2.在長方體中,,,則異面直線與所成角的余弦值為()A. B.C. D.3.古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上題的已知條件,可求得該女子第3天所織布的尺數(shù)為A.2031 B.35 C.84.在中,若,則是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形5.在復(fù)平面內(nèi),復(fù)數(shù)滿足,則的共軛復(fù)數(shù)對應(yīng)的點(diǎn)位于A.第一象限 B.第二象限 C.第三象限 D.第四象限6.若,則一定有()A. B. C. D.7.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知等比數(shù)列的公比為正數(shù),且,則()A. B. C. D.9.在中,已知角的對邊分別為,若,,,,且,則的最小角的正切值為()A. B. C. D.10.向量,則()A. B.C.與的夾角為60° D.與的夾角為30°二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量滿足,則與的夾角的余弦值為__________.12.設(shè)常數(shù),函數(shù),若的反函數(shù)的圖像經(jīng)過點(diǎn),則_______.13.設(shè),用,表示所有形如的正整數(shù)集合,其中且,為集合中的所有元素之和,則的通項(xiàng)公式為_______14.已知圓截直線所得線段的長度是,則圓M與圓的位置關(guān)系是_________.15.已知函數(shù)的部分圖象如圖所示,則_______.16.如圖,正方體ABCD﹣A1B1C1D1的棱長為1,M為B1C1中點(diǎn),連接A1B,D1M,則異面直線A1B和D1M所成角的余弦值為________________________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)求函數(shù)的最小正周期;(2)求函數(shù)的最小值和取得最小值時的取值.18.如圖,已知四棱錐,底面是邊長為的菱形,,側(cè)面為正三角形,側(cè)面底面,為側(cè)棱的中點(diǎn),為線段的中點(diǎn)(Ⅰ)求證:平面;(Ⅱ)求證:;(Ⅲ)求三棱錐的體積19.在ΔABC中,角A,B,C的對邊分別為a,b,c,且滿足3(b(1)求角B的大小;(2)若ΔABC的面積為32,B是鈍角,求b20.已知數(shù)列滿足,,,.(1)證明:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項(xiàng)公式;(3)證明:.21.已知數(shù)列的前項(xiàng)和為,對任意滿足,且,數(shù)列滿足,,其前9項(xiàng)和為63.(1)求數(shù)列和的通項(xiàng)公式;(2)令,數(shù)列的前項(xiàng)和為,若存在正整數(shù),有,求實(shí)數(shù)的取值范圍;(3)將數(shù)列,的項(xiàng)按照“當(dāng)為奇數(shù)時,放在前面;當(dāng)為偶數(shù)時,放在前面”的要求進(jìn)行“交叉排列”,得到一個新的數(shù)列:…,求這個新數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

由函數(shù)的解析式,求得,,進(jìn)而得到,,結(jié)合兩角差的余弦公式和三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,函數(shù),令,即,即,所以,令,即,即,所以,又因?yàn)椋?,即,,所以,,即,,平方可得,,兩式相加可得,所?故選:C.【點(diǎn)睛】本題主要考查了兩角和與差的余弦公式,三角函數(shù)的基本關(guān)系式的應(yīng)用,以及函數(shù)的解析式的應(yīng)用,其中解答中合理應(yīng)用三角函數(shù)的恒等變換的公式進(jìn)行運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.2、C【解析】

畫出長方體,將平移至,則,則即為異面直線與所成角,由余弦定理即可求解.【詳解】根據(jù)題意,畫出長方體如下圖所示:將平移至,則即為異面直線與所成角,,由余弦定理可得故選:C【點(diǎn)睛】本題考查了長方體中異面直線的夾角求法,余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.3、A【解析】

由題意可得該女子每天織布的尺數(shù)構(gòu)成一個等比數(shù)列,且數(shù)列的公比為2,由題意求出數(shù)列的首項(xiàng)后可得第3天織布的尺數(shù).【詳解】由題意可得該女子每天織布的尺數(shù)構(gòu)成一個等比數(shù)列,且數(shù)列的公比為2,前5項(xiàng)的和為5,設(shè)首項(xiàng)為a1,前n項(xiàng)和為S則由題意得S5∴a1∴a3即該女子第3天所織布的尺數(shù)為2031故選A.【點(diǎn)睛】本題以中國古文化為載體考查等比數(shù)列的基本運(yùn)算,解題的關(guān)鍵是正確理解題意,將問題轉(zhuǎn)化成等比數(shù)列的知識求解,考查閱讀理解和轉(zhuǎn)化、計(jì)算能力.4、A【解析】

首先根據(jù)降冪公式把等式右邊降冪你,再根據(jù)把換成與的關(guān)系,進(jìn)一步化簡即可.【詳解】,,,選A.【點(diǎn)睛】本題主要考查了二倍角,兩角和與差的余弦等,需熟記兩角和與差的正弦余弦等相關(guān)公式,以及特殊三角函數(shù)的值是解決本題的關(guān)鍵,屬于基礎(chǔ)題.5、A【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由共軛復(fù)數(shù)的概念得答案.【詳解】由z(1﹣i)=2,得z=,∴.則z的共軛復(fù)數(shù)對應(yīng)的點(diǎn)的坐標(biāo)為(1,﹣1),位于第四象限.故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.6、C【解析】

由題,可得,且,即,整理后即可得到作出判斷【詳解】由題可得,則,因?yàn)?則,,則有,所以,即故選C【點(diǎn)睛】本題考查不等式的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題7、A【解析】

對分類討論,利用兩條直線相互垂直的充要條件即可得出.【詳解】由題意,當(dāng)時,兩條直線分別化為:,,此時兩條直線相互垂直;當(dāng)時,兩條直線分別化為:,,此時兩條直線不垂直,舍去;當(dāng)且時,由兩條直線相互垂直,則,即,解得或;綜上可得:或,兩條直線相互垂直,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了簡易邏輯的判定方法、兩條直線相互垂直的充要條件,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.8、D【解析】設(shè)公比為,由已知得,即,又因?yàn)榈缺葦?shù)列的公比為正數(shù),所以,故,故選D.9、D【解析】

根據(jù)大角對大邊判斷最小角為,利用正弦定理得到,代入余弦定理計(jì)算得到,最后得到.【詳解】根據(jù)大角對大邊判斷最小角為根據(jù)正弦定理知:根據(jù)余弦定理:化簡得:故答案選D【點(diǎn)睛】本題考查了正弦定理,余弦定理,意在考查學(xué)生的計(jì)算能力.10、B【解析】試題分析:由,可得,所以,故選B.考點(diǎn):向量的運(yùn)算.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由得,結(jié)合條件,即可求出,的值,代入求夾角公式,即可求解.【詳解】由得與的夾角的余弦值為.【點(diǎn)睛】本題考查數(shù)量積的定義,公式的應(yīng)用,求夾角公式的應(yīng)用,計(jì)算量較大,屬基礎(chǔ)題.12、1【解析】

反函數(shù)圖象過(2,1),等價于原函數(shù)的圖象過(1,2),代點(diǎn)即可求得.【詳解】依題意知:f(x)=lg(x+a)的圖象過(1,2),∴l(xiāng)g(1+a)=2,解得a=1.故答案為:1【點(diǎn)睛】本題考查了反函數(shù),熟記其性質(zhì)是關(guān)鍵,屬基礎(chǔ)題.13、【解析】

把集合中每個數(shù)都表示為2的0到的指數(shù)冪相加的形式,并確定,,,,每個數(shù)都出現(xiàn)次,于是利用等比數(shù)列求和公式計(jì)算,可求出數(shù)列的通項(xiàng)公式.【詳解】由題意可知,,,,是0,1,2,,的一個排列,且集合中共有個數(shù),若把集合中每個數(shù)表示為的形式,則,,,,每個數(shù)都出現(xiàn)次,因此,,故答案為:.【點(diǎn)睛】本題以數(shù)列新定義為問題背景,考查等比數(shù)列的求和公式,考查學(xué)生的理解能力與計(jì)算能力,屬于中等題.14、相交【解析】

根據(jù)直線與圓相交的弦長公式,求出的值,結(jié)合兩圓的位置關(guān)系進(jìn)行判斷即可.【詳解】解:圓的標(biāo)準(zhǔn)方程為,則圓心為,半徑,圓心到直線的距離,圓截直線所得線段的長度是,即,,則圓心為,半徑,圓的圓心為,半徑,則,,,,即兩個圓相交.故答案為:相交.【點(diǎn)睛】本題主要考查直線和圓相交的應(yīng)用,以及兩圓位置關(guān)系的判斷,根據(jù)相交弦長公式求出的值是解決本題的關(guān)鍵.15、【解析】

由圖可得,即可求得:,再由圖可得:當(dāng)時,取得最大值,即可列方程,整理得:,解得:(),結(jié)合即可得解.【詳解】由圖可得:,所以,解得:由圖可得:當(dāng)時,取得最大值,即:整理得:,所以()又,所以【點(diǎn)睛】本題主要考查了三角函數(shù)圖象的性質(zhì)及觀察能力,還考查了轉(zhuǎn)化思想及計(jì)算能力,屬于中檔題.16、.【解析】

連接、,取的中點(diǎn),連接,可知,且是以為腰的等腰三角形,然后利用銳角三角函數(shù)可求出的值作為所求的答案.【詳解】如下圖所示:連接、,取的中點(diǎn),連接,在正方體中,,則四邊形為平行四邊形,所以,則異面直線和所成的角為或其補(bǔ)角,易知,由勾股定理可得,,為的中點(diǎn),則,在中,,因此,異面直線和所成角的余弦值為,故答案為.【點(diǎn)睛】本題考查異面直線所成角的余弦值的計(jì)算,求解異面直線所成的角一般利用平移直線法求解,遵循“一作、二證、三計(jì)算”,在計(jì)算時,一般利用銳角三角函數(shù)的定義或余弦定理求解,考查計(jì)算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)當(dāng)時,.【解析】

(1)利用二倍角公式將函數(shù)的解析式化簡得,再利用周期公式可得出函數(shù)的最小正周期;(2)由可得出函數(shù)的最小值和對應(yīng)的的值.【詳解】(1),因此,函數(shù)的最小正周期為;(2)由(1)知,當(dāng),即當(dāng)時,函數(shù)取到最小值.【點(diǎn)睛】本題考查利用二倍角公式化簡,同時也考查了正弦型函數(shù)的周期和最值的求解,考查學(xué)生的化簡運(yùn)算能力,屬于基礎(chǔ)題.18、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)【解析】

(Ⅰ)連接,交于點(diǎn);根據(jù)三角形中位線可證得;由線面平行判定定理可證得結(jié)論;(Ⅱ)由等腰三角形三線合一可知;由面面垂直的性質(zhì)可知平面;根據(jù)線面垂直性質(zhì)可證得結(jié)論;(Ⅲ)利用體積橋的方式將所求三棱錐體積轉(zhuǎn)化為;根據(jù)已知長度和角度關(guān)系分別求得四邊形面積和高,代入得到結(jié)果.【詳解】(Ⅰ)證明:連接,交于點(diǎn)四邊形為菱形為中點(diǎn)又為中點(diǎn)平面,平面平面(Ⅱ)為正三角形,為中點(diǎn)平面平面,平面平面,平面平面,又平面(Ⅲ)為中點(diǎn)又,,由(Ⅱ)知,【點(diǎn)睛】本題考查立體幾何中線面平行、線線垂直關(guān)系的證明、三棱錐體積的求解問題;涉及到線面平行判定定理、面面垂直性質(zhì)定理和判定定理的應(yīng)用、體積橋的方式求解三棱錐體積等知識,屬于??碱}型.19、(1)B=π3或2π【解析】

(1)由正弦定理和三角恒等變換的公式,化簡得3sin(A+B)=2sinBsin(2)由(1)和三角形的面積公式,可求得ac=2,再由余弦定理和基本不等式,即可求解b的最小值.【詳解】(1)由題意,知3(b結(jié)合正弦定理得:3(即3sin又在△ABC中,sin(A+B)=sinC>0因?yàn)锽∈(0,π)所以B=π3或(2)由三角形的面積公式,可得12又由sinB=32因?yàn)锽是鈍角,所以B=2π由余弦定理得b2當(dāng)且僅當(dāng)a=c時取等號,所以b的最小值為6.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時,要抓住題設(shè)條件和利用某個定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于中檔試題.20、(1)證明見解析;(2);(3)證明見解析.【解析】

(1)由,得,即可得到本題答案;(2)由,得,即可得到本題答案;(3)當(dāng)時,滿足題意;若n是偶數(shù),由,可得;當(dāng)n是奇數(shù),且時,由,可得,綜上,即可得到本題答案.【詳解】(1)因?yàn)?,所以,因?yàn)?,所以,所以?shù)列是等比數(shù)列;(2)因?yàn)?,所以,所以,又因?yàn)?,所以,所以是以為首?xiàng),為公比的等比數(shù)列,所以,所以;(3)①當(dāng)時,;②若n是偶數(shù),則,所以當(dāng)n是偶數(shù)時,;③當(dāng)n是奇數(shù),且時,;綜上所述,當(dāng)時,.【點(diǎn)睛】本題主要考查利用構(gòu)造法證明等比數(shù)列并求通項(xiàng)公式,以及數(shù)列與不等式的綜合問題.21、(1);(2);(3)【解析】試題分析:(1)由已知得數(shù)列是等差數(shù)列,從而易得,也即得,利用求得,再求得可得數(shù)列通項(xiàng),利用已知可得是等差數(shù)列,由等差數(shù)列的基本量法可求得;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論