




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
基于超限學(xué)習(xí)機的無設(shè)備定位方法研究基于超限學(xué)習(xí)機的無設(shè)備定位方法研究
摘要
無線定位技術(shù)因其方便快捷、無需硬件部署、精度高等優(yōu)點而受到廣泛關(guān)注。本文提出一種基于超限學(xué)習(xí)機的無設(shè)備定位方法,其中超限學(xué)習(xí)機被用于實現(xiàn)非線性函數(shù)映射,通過收集Wi-Fi信號強度和位置數(shù)據(jù)作為訓(xùn)練集,并以壓縮感知的方式實現(xiàn)極限降維,來進行定位。為了進一步提升精度,本文引入了局部權(quán)重貢獻方法來降低信號強度測量誤差對定位結(jié)果的影響。
本文還在室內(nèi)環(huán)境下進行了一系列實驗,比較了所提出的方法與傳統(tǒng)的KNN定位算法和基于支持向量機的定位方法。實驗結(jié)果表明,所提出的無設(shè)備定位方法具有較高的定位精度和更好的魯棒性。
關(guān)鍵詞:超限學(xué)習(xí)機;無設(shè)備定位;Wi-Fi;壓縮感知;局部權(quán)重貢獻。
Abstract
Wirelesspositioningtechnologyhasattractedwidespreadattentionduetoitsconvenience,nohardwaredeployment,andhighaccuracy.Inthispaper,adevice-freepositioningmethodbasedonextremelearningmachine(ELM)isproposed,inwhichtheELMisusedtoachievenon-linearfunctionmapping.Wi-Fisignalstrengthandlocationdataarecollectedastrainingsets,andextremedimensionreductionisachievedbycompressivesensingtoperformpositioning.Inordertofurtherimprovetheaccuracy,thispaperintroducesthelocalweightcontributionmethodtoreducetheimpactofmeasurementerrorsonthepositioningresults.
Inaddition,aseriesofexperimentswerecarriedoutinanindoorenvironmenttocomparetheproposedmethodwiththetraditionalKNNpositioningalgorithmandthesupportvectormachine-basedpositioningmethod.Theexperimentalresultsshowthattheproposeddevice-freepositioningmethodhashigherpositioningaccuracyandbetterrobustness.
Keywords:Extremelearningmachine(ELM);device-freepositioning;Wi-Fi;compressivesensing;localweightcontributionDevice-freepositioninghasbecomeanimportantresearchareaduetoitswiderangeofapplicationssuchassecurity,healthcare,andhomeautomation.Inthisstudy,anoveldevice-freepositioningalgorithmbasedonextremelearningmachine(ELM)andcompressivesensingwasproposed.Theproposedalgorithmutilizesthereceivedsignalstrength(RSS)ofWi-Fisignalstoestimatethepositionofatargetuserwithouttheneedforanyadditionaldevicesorsensors.
TheELMalgorithmwasutilizedtotrainalocalweightcontributionmatrix,whichisusedtodeterminethecontributionofeachsignalstrengthmeasurementtothepositioningresults.CompressivesensingwasusedtoreducethedimensionalityoftheRSSmatrix,thusreducingthecomputationalcomplexityandimprovingtheaccuracyofthealgorithm.
Aseriesofexperimentswereconductedinanindoorenvironmenttoevaluatetheproposeddevice-freepositioningmethod.TheexperimentalresultsshowedthattheproposedmethodoutperformedthetraditionalKNNpositioningalgorithmandthesupportvectormachine-basedpositioningmethodintermsofaccuracyandrobustness.
Inconclusion,thisstudyproposesanoveldevice-freepositioningalgorithmbasedonELMandcompressivesensing,whichcanaccuratelyestimatethepositionofatargetuserusingonlyWi-Fisignals.Themethodhaspotentialforawiderangeofapplications,includinghomeautomation,healthcare,andsecurityTherearesomelimitationsandfuturedirectionsfortheproposeddevice-freepositioningalgorithmbasedonELMandcompressivesensing.First,thealgorithmassumesthattheenvironmentisstaticduringthepositioningprocess.However,inreal-worldscenarios,theenvironmentmaychangedynamicallyovertime,whichcouldaffecttheaccuracyofthealgorithm.Therefore,futureresearchcanfocusondevelopingdynamicalgorithmsthatcanadapttochangingenvironments.
Second,thealgorithmisbasedonWi-Fisignals,whichmaynotbeavailableinallenvironments.Insuchcases,alternativesignals,suchasBluetoothorRFID,couldbeused.Futureresearchcanexplorehowtheproposedalgorithmcouldbeadaptedtoworkwithothertypesofsignals.
Third,theproposedalgorithmrequiresatrainingphasetobuildthedictionarymatrix.Thisprocesscanbetime-consumingandmaynotbefeasibleinsomereal-worldscenarios.Therefore,futureresearchcanfocusondevelopingalgorithmsthatdonotrequireatrainingphase.
Fourth,theproposedalgorithmcurrentlyonlyworksforsingle-userscenarios.Inmulti-userenvironments,interferencebetweenuserscouldaffecttheaccuracyofthealgorithm.Therefore,futureresearchcanexplorehowthealgorithmcouldbeadaptedtoworkinmulti-userscenarios.
Finally,whiletheproposedalgorithmoutperformedtraditionalpositioningalgorithmsintermsofaccuracyandrobustness,thereisstillroomforimprovement.Futureresearchcanfocusondevelopingmoreadvancedalgorithmsthatfurtherimprovetheaccuracyandefficiencyofdevice-freepositioningsystems.
Overall,theproposeddevice-freepositioningalgorithmbasedonELMandcompressivesensinghasthepotentialtorevolutionizeindoorpositioningsystems.Withfurtherdevelopmentandresearch,itcouldenableawiderangeofapplicationsthatbenefitsocietyOnepotentialapplicationofdevice-freepositioningsystemsisinthefieldofhealthcare.Hospitalstaffneedtokeeptrackofpatientsandmedicalequipmentwithinthehospitalenvironment,andaccurateindoorpositioningcanhelptoincreaseefficiencyandreduceerrors.Forexample,adevice-freepositioningsystemcouldbeusedtotrackthemovementofahospitalbedandalertstaffwhenitreachesacertainlocation,suchastheoperatingroom.Itcouldalsobeusedtotrackthelocationofmedicalstaff,ensuringthattheyareinthecorrectareatoprovidetherequiredmedicalcare.
Anotherpotentialapplicationisinthefieldofsecurity.Traditionalsecuritysystemssuchasvideocamerasmaybeineffectiveincertainsituations,suchaswhentheintruderiswearingamaskorifthecamera'sviewisblocked.Adevice-freepositioningsystemcandetectthepresenceofahumanbeingeveniftheyarenotcarryinganyelectronicdevices,enablingsecuritypersonneltoidentifytheintruderandtakeappropriateaction.
Moreover,device-freepositioningsystemscanalsobeusedinenvironmentalmonitoring.Theycandetectandtrackthemovementofwildlifeinnaturalhabitatswithoutdisturbingthem,providingvaluableinformationtoresearchersandconservationists.Theycanalsobeusedtomonitorthemovementofpeopleindisasterzones,enablingfirstresponderstolocatesurvivorsandprovideassistancemoreefficiently.
Finally,device-freepositioningsystemscanbeusedinretailenvironments.Theycanprovidevaluableinsightsintocustomerbehavior,suchashowtheynavigatethestoreandwhichitemsaremostpopular.Thisinformationcanbeusedtoimprovestorelayoutandproductplacement,leadingtoincreasedsalesandcustomersatisfaction.
Inconclusion,device-freepositioningsystemshaveenormouspotentialtoenhance
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 股權(quán)轉(zhuǎn)讓合同男方提出解除合作
- 中小企業(yè)合同保障宣言2025
- 山東省單縣2025屆數(shù)學(xué)五年級第二學(xué)期期末復(fù)習(xí)檢測試題含答案
- 內(nèi)蒙古自治區(qū)鄂爾多斯市達標(biāo)名校2025屆初三下期第一次月考試題含解析
- 井陘礦區(qū)2025年數(shù)學(xué)五下期末質(zhì)量跟蹤監(jiān)視模擬試題含答案
- 智慧農(nóng)業(yè)技術(shù)農(nóng)業(yè)領(lǐng)域的新篇章與新機遇
- 農(nóng)村集體土地承包合同示例
- 統(tǒng)編版二年級語文下冊名校真題卷(含答案)
- 無子女雙方協(xié)商離婚協(xié)議書
- 2025預(yù)制管樁購買合同書
- 供應(yīng)鏈管理師技能競賽理論考試題及答案
- (新版)糖尿病知識競賽考試題庫300題(含答案)
- 新工人進場三級教育表格
- 寫字樓保潔人員培訓(xùn)方案(技術(shù)方案)
- (附著式升降腳手架)設(shè)備設(shè)施風(fēng)險分級管控清單
- 外協(xié)救援服務(wù)協(xié)議
- 工業(yè)機器人的發(fā)展歷史
- DL∕T 2547-2022 交流斷面失電監(jiān)測裝置技術(shù)規(guī)范
- 高齡患者的麻醉管理策略
- 小小科學(xué)家《物理》模擬試卷A(附答案)
- 2024年安徽蚌埠市國有資本運營控股集團有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論