版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知一幾何體的三視圖,則它的體積為()A. B. C. D.2.在平行四邊形中,為一條對(duì)角線,,,則=()A.(2,4) B.(3,5) C.(1,1) D.(-1,-1)3.若展開式中的系數(shù)為-20,則等于()A.-1 B. C.-2 D.4.在△ABC中角ABC的對(duì)邊分別為A.B.c,cosC=,且acosB+bcosA=2,則△ABC面積的最大值為()A. B. C. D.5.中,,,,則()A.1 B. C. D.46.設(shè)二次函數(shù)在區(qū)間上單調(diào)遞減,且,則實(shí)數(shù)的取值范圍是()A.(-∞,0] B.[2,+∞) C.(-∞,0]∪[2,+∞) D.[0,2]7.已知為銳角,,則()A. B. C. D.8.高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過(guò)的最大整數(shù),則稱為高斯函數(shù).例如:,,已知函數(shù),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.9.已知角是第三象限的角,則角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角10.在中,角,,所對(duì)的邊分別為,,,,的平分線交于點(diǎn),且,則的最小值為()A.8 B.9 C.10 D.7二、填空題:本大題共6小題,每小題5分,共30分。11.已知中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,,,則的面積為______;12.函數(shù),的值域是________.13.計(jì)算:______.14.函數(shù),函數(shù),若對(duì)所有的總存在,使得成立,則實(shí)數(shù)的取值范圍是__________.15.?dāng)?shù)列的前項(xiàng)和為,,,則________.16.每年五月最受七中學(xué)子期待的學(xué)生活動(dòng)莫過(guò)于學(xué)生節(jié),在每屆學(xué)生節(jié)活動(dòng)中,著七中校服的布偶“七中熊”尤其受同學(xué)和老師歡迎.已知學(xué)生會(huì)將在學(xué)生節(jié)當(dāng)天售賣“七中熊”,并且會(huì)將所獲得利潤(rùn)全部捐獻(xiàn)于公益組織.為了讓更多同學(xué)知曉,學(xué)生會(huì)宣傳部需要前期在學(xué)校張貼海報(bào)宣傳,成本為250元,并且當(dāng)學(xué)生會(huì)向廠家訂制只“七中熊”時(shí),需另投入成本,(元),.通過(guò)市場(chǎng)分析,學(xué)生會(huì)訂制的“七中熊”能全部售完.若學(xué)生節(jié)當(dāng)天,每只“七中熊”售價(jià)為70元,則當(dāng)銷量為______只時(shí),學(xué)生會(huì)向公益組織所捐獻(xiàn)的金額會(huì)最大.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知兩個(gè)定點(diǎn),動(dòng)點(diǎn)滿足.設(shè)動(dòng)點(diǎn)的軌跡為曲線,直線.(1)求曲線的軌跡方程;(2)若與曲線交于不同的兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求直線的斜率;(3)若,是直線上的動(dòng)點(diǎn),過(guò)作曲線的兩條切線,切點(diǎn)為,探究:直線是否過(guò)定點(diǎn).18.如圖,是邊長(zhǎng)為2的正三角形.若,平面,平面平面,,且.(1)求證:平面;(2)求證:平面平面.19.在等差數(shù)列中,已知,.(1)求數(shù)列的前項(xiàng)和的最大值;(2)若,求數(shù)列前項(xiàng)和.20.某校全體教師年齡的頻率分布表如表1所示,其中男教師年齡的頻率分布直方圖如圖2所示.已知該校年齡在歲以下的教師中,男女教師的人數(shù)相等.表1:(1)求圖2中的值;(2)若按性別分層抽樣,隨機(jī)抽取16人參加技能比賽活動(dòng),求男女教師抽取的人數(shù);(3)若從年齡在的教師中隨機(jī)抽取2人,參加重陽(yáng)節(jié)活動(dòng),求至少有1名女教師的概率.21.已知向量,向量,向量,記與的夾角為.(Ⅰ)求(Ⅱ)求向量與向量的夾角的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】所求體積,故選C.2、C【解析】試題分析:,故選C.考點(diǎn):平面向量的線性運(yùn)算.3、A【解析】由,可得將選項(xiàng)中的數(shù)值代入驗(yàn)證可得,符合題意,故選A.4、D【解析】
首先利用同角三角函數(shù)的關(guān)系式求出sinC的值,進(jìn)一步利用余弦定理和三角形的面積公式及基本不等式的應(yīng)用求出結(jié)果.【詳解】△ABC中角ABC的對(duì)邊分別為a、b、c,cosC,利用同角三角函數(shù)的關(guān)系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.則,△ABC面積的最大值為,故選D.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,基本不等式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題.5、C【解析】
利用三角形內(nèi)角和為可求得;利用正弦定理可求得結(jié)果.【詳解】由正弦定理得:本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦定理解三角形,屬于基礎(chǔ)題.6、D【解析】
求出導(dǎo)函數(shù),題意說(shuō)明在上恒成立(不恒等于0),從而得,得開口方向,及函數(shù)單調(diào)性,再由函數(shù)性質(zhì)可解.【詳解】二次函數(shù)在區(qū)間上單調(diào)遞減,則,,所以,即函數(shù)圖象的開口向上,對(duì)稱軸是直線.所以f(0)=f(2),則當(dāng)時(shí),有.【點(diǎn)睛】實(shí)際上對(duì)二次函數(shù),當(dāng)時(shí),函數(shù)在遞減,在上遞增,當(dāng)時(shí),函數(shù)在遞增,在上遞減.7、A【解析】
先將展開并化簡(jiǎn),再根據(jù)二倍角公式,計(jì)算可得?!驹斀狻坑深}得,,整理得,又為銳角,則,,解得.故選:A【點(diǎn)睛】本題考查兩角和差公式以及二倍角公式,是基礎(chǔ)題。8、D【解析】
分離常數(shù)法化簡(jiǎn)f(x),根據(jù)新定義即可求得函數(shù)y=[f(x)]的值域.【詳解】,又>0,∴,∴∴當(dāng)x∈(1,1)時(shí),y=[f(x)]=1;當(dāng)x∈[1,)時(shí),y=[f(x)]=1.∴函數(shù)y=[f(x)]的值域是{1,1}.故選D.【點(diǎn)睛】本題考查了新定義的理解和應(yīng)用,考查了分離常數(shù)法求一次分式函數(shù)的值域,是中檔題.9、D【解析】
可采取特殊化的思路求解,也可將各象限分成兩等份,再?gòu)膞軸正半軸起,逆時(shí)針依次將各區(qū)域標(biāo)上一?二?三?四,則標(biāo)有三的即為所求區(qū)域.【詳解】(方法一)取,則,此時(shí)角為第二象限的角;取,則,此時(shí)角為第四象限的角.(方法二)如圖,先將各象限分成兩等份,再?gòu)膞軸正半軸起,逆時(shí)針依次將各區(qū)域標(biāo)上一?二?三?四,則標(biāo)有三的區(qū)域即為角的終邊所在的區(qū)域,故角為第二或第四象限的角.故選:D【點(diǎn)睛】本題主要考查了根據(jù)所在象限求所在象限的方法,屬于中檔題.10、B【解析】
根據(jù)三角形的面積公式,建立關(guān)于的關(guān)系式,結(jié)合基本不等式,利用1的代換,即可求解,得到答案.【詳解】由題意,因?yàn)椋钠椒志€交于點(diǎn),且,所以,整理得,得,則,當(dāng)且僅當(dāng),即,所以的最小值9,故選B.【點(diǎn)睛】本題主要考查了基本不等式的應(yīng)用,其中合理利用1的代換,結(jié)合基本不等式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先根據(jù)以及余弦定理計(jì)算出的值,再由面積公式即可求解出的面積.【詳解】因?yàn)椋?,所以,所?故答案為:.【點(diǎn)睛】本題考查解三角形中利用余弦定理求角以及面積公式的運(yùn)用,難度較易.三角形中,已知兩邊的乘積和第三邊所對(duì)的角即可利用面積公式求解出三角形面積.12、【解析】
利用正切函數(shù)在單調(diào)遞增,求得的值域?yàn)?【詳解】因?yàn)楹瘮?shù)在單調(diào)遞增,所以,,故函數(shù)的值域?yàn)?【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性求值域,注意定義域、值域要寫成區(qū)間的形式.13、【解析】
直接利用反三角函數(shù)運(yùn)算法則寫出結(jié)果即可.【詳解】解:.故答案為:.【點(diǎn)睛】本題考查反三角函數(shù)的運(yùn)算法則的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
分別求得f(x)、g(x)在[0,]上的值域,結(jié)合題意可得它們的值域間的包含關(guān)系,從而求得實(shí)數(shù)m的取值范圍.【詳解】∵f(x)=sin2x+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+),當(dāng)x∈[0,],2x+∈[,],∴2sin(2x+)∈[1,2],∴f(x)∈[1,2].對(duì)于g(x)=mcos(2x﹣)﹣2m+3(m>0),2x﹣∈[﹣,],mcos(2x﹣)∈[,m],∴g(x)∈[﹣+3,3﹣m].由于對(duì)所有的x2∈[0,]總存在x1∈[0,],使得f(x1)=g(x2)成立,可得[﹣+3,3﹣m]?[1,2],故有3﹣m≤2,﹣+3≥1,解得實(shí)數(shù)m的取值范圍是[1,].故答案為.【點(diǎn)睛】本題考查兩角和與差的正弦函數(shù),著重考查三角函數(shù)的性質(zhì)的運(yùn)用,考查二倍角的余弦,解決問(wèn)題的關(guān)鍵是理解“對(duì)所有的x2∈[0,]總存在x1∈[0,],使得f(x1)=g(x2)成立”的含義,轉(zhuǎn)化為f(x)的值域是g(x)的子集.15、18【解析】
利用,化簡(jiǎn)得到數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,利用,即可求解.【詳解】,即所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列即所以故答案為:【點(diǎn)睛】本題主要考查了與的關(guān)系以及等比數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.16、200【解析】
由題意求得學(xué)生會(huì)向公益組織所捐獻(xiàn)的金額的函數(shù)解析式,再由對(duì)勾函數(shù)的性質(zhì)求得取最大值時(shí)的值即可.【詳解】由題意,設(shè)學(xué)生會(huì)向公益組織所捐獻(xiàn)的金額為,,由對(duì)勾函數(shù)的性質(zhì)知,在時(shí)取得最小值,所以時(shí),取得最大值.故答案為:200【點(diǎn)睛】本題主要考查利用函數(shù)解決實(shí)際問(wèn)題和對(duì)勾函數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2);(3).【解析】
(1)設(shè)點(diǎn)P坐標(biāo)為(x,y),運(yùn)用兩點(diǎn)的距離公式,化簡(jiǎn)整理,即可得到所求軌跡的方程;(2)由,則點(diǎn)到邊的距離為,由點(diǎn)到線的距離公式得直線的斜率;(3)由題意可知:O,Q,M,N四點(diǎn)共圓且在以O(shè)Q為直徑的圓上,設(shè),則圓的圓心為運(yùn)用直徑式圓的方程,得直線的方程為,結(jié)合直線系方程,即可得到所求定點(diǎn).【詳解】(1)設(shè)點(diǎn)的坐標(biāo)為由可得,,整理可得所以曲線的軌跡方程為.(2)依題意,,且,則點(diǎn)到邊的距離為即點(diǎn)到直線的距離,解得所以直線的斜率為.(3)依題意,,則都在以為直徑的圓上是直線上的動(dòng)點(diǎn),設(shè)則圓的圓心為,且經(jīng)過(guò)坐標(biāo)原點(diǎn)即圓的方程為,又因?yàn)樵谇€上由,可得即直線的方程為由且可得,解得所以直線是過(guò)定點(diǎn).【點(diǎn)睛】本題考查點(diǎn)的軌跡方程的求法,注意運(yùn)用兩點(diǎn)的距離公式,考查直線和圓相交的弦長(zhǎng)公式,考查直線恒過(guò)定點(diǎn)的求法,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.18、(1)見解析;(2)見解析【解析】
(1)取的中點(diǎn),連接,由平面平面,得平面,再證即可證明(2)證明平面,再根據(jù)面面垂直的判定定理從而進(jìn)行證明.【詳解】(1)取的中點(diǎn),連接,因?yàn)?,且?所以,.又因?yàn)槠矫嫫矫?,所以平面,又平面,所以又因?yàn)槠矫妫矫?,所以平?(2)連接,由(1)知,又,,所以四邊形是平行四邊形,所以.又是正三角形,為的中點(diǎn),∴,因?yàn)槠矫嫫矫?,所以平面,所以平?又平面,所以.因?yàn)?,,所以平?因?yàn)槠矫?,所以平面平?【點(diǎn)睛】本題考查了線面平行的證明,線面垂直,面面垂直的判定定理,考查空間想象和推理能力,熟記定理是關(guān)鍵,是一道中檔題.19、(1)9;(2)【解析】
(1)利用等差數(shù)列公式得到,當(dāng)時(shí),最大為9(2)討論和兩種情況,分別計(jì)算得到答案.【詳解】(1),又,所以令,得所以當(dāng)時(shí),最大為.(2)由(1)可知,當(dāng)時(shí),,所以當(dāng)時(shí),,所以.綜上所述:【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,前N項(xiàng)和最大值,絕對(duì)值求和,找到通項(xiàng)公式的正負(fù)分界處是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1);(2)見解析;(3)【解析】
由男教師年齡的頻率分布直方圖總面積為1求得答案;由男教師年齡在的頻率可計(jì)算出男教師人數(shù),從而女教師人數(shù)也可求得,于是通過(guò)分層抽樣的比例關(guān)系即可得到答案;年齡在的教師中,男教師為(人),則女教師為1人,從而可計(jì)算出基本事件的概率.【詳解】(1)由男教師年齡的頻率分布直方圖得解得(2)該校年齡在歲以下的男女教師人數(shù)相等,且共14人,年齡在歲以下的男教師共7人由(1)知,男教師年齡在的頻率為男教師共有(人),女教師共有(人)按性別分層抽樣,隨機(jī)抽取16人參加技能比賽活動(dòng),則男教師抽取的人數(shù)為(人),女教師抽取的人數(shù)為人(3)年齡在的教師中,男教師為(人),則女教師為1人從年齡在的教師中隨機(jī)抽取2人,共有10種可能情形其中至少有1名女教師的有4種情形故所求概率為【點(diǎn)睛】本題主要考查頻率分布直方圖,分層抽樣,古典概率的計(jì)算,意在考查學(xué)生的計(jì)算能力和分析能力,難度不大.21、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由向量夾角公式可求,再由三角函數(shù)的誘導(dǎo)公式,化簡(jiǎn)得原式,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年建筑項(xiàng)目施工材料采購(gòu)供應(yīng)協(xié)議
- 基于人工智能的圖像識(shí)別軟件許可使用協(xié)議
- 文化創(chuàng)意產(chǎn)業(yè)發(fā)展投資合同書
- 基于云計(jì)算技術(shù)的遠(yuǎn)程教育平臺(tái)建設(shè)合同
- 2024年金融科技產(chǎn)業(yè)投資合同
- 商標(biāo)注冊(cè)協(xié)議
- 汽車行業(yè)二手車交易合同
- 智慧城市基礎(chǔ)設(shè)施建設(shè)投資合同
- 醫(yī)療器材使用培訓(xùn)協(xié)議
- 物業(yè)服務(wù)及管理協(xié)議
- 臺(tái)資企業(yè)A股上市相關(guān)資料
- 電 梯 工 程 預(yù) 算 書
- 羅盤超高清圖
- 參會(huì)嘉賓簽到表
- 機(jī)械車間員工績(jī)效考核表
- 形式發(fā)票格式2 INVOICE
- 2.48低危胸痛患者后繼治療評(píng)估流程圖
- 人力資源管理之績(jī)效考核 一、什么是績(jī)效 所謂績(jī)效簡(jiǎn)單的講就是對(duì)
- 山東省醫(yī)院目錄
- 云南地方本科高校部分基礎(chǔ)研究
- 廢品管理流程圖
評(píng)論
0/150
提交評(píng)論