畸變電網(wǎng)下PWM整流器魯棒預(yù)測控制研究_第1頁
畸變電網(wǎng)下PWM整流器魯棒預(yù)測控制研究_第2頁
畸變電網(wǎng)下PWM整流器魯棒預(yù)測控制研究_第3頁
畸變電網(wǎng)下PWM整流器魯棒預(yù)測控制研究_第4頁
畸變電網(wǎng)下PWM整流器魯棒預(yù)測控制研究_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

畸變電網(wǎng)下PWM整流器魯棒預(yù)測控制研究摘要:畸變電網(wǎng)在現(xiàn)代工業(yè)生產(chǎn)中廣泛存在,其復(fù)雜性和不穩(wěn)定性對電力系統(tǒng)的穩(wěn)定運(yùn)行產(chǎn)生了深遠(yuǎn)影響。針對畸變電網(wǎng)下PWM整流器的魯棒控制問題,本文提出了一種基于預(yù)測控制的解決方案。首先,通過建立畸變電網(wǎng)下PWM整流器的動態(tài)數(shù)學(xué)模型,利用基于神經(jīng)網(wǎng)絡(luò)的系統(tǒng)辨識技術(shù)進(jìn)行參數(shù)辨識,建立了一個能夠準(zhǔn)確反映畸變電網(wǎng)特性的系統(tǒng)模型。然后,采用基于RBF神經(jīng)網(wǎng)絡(luò)的預(yù)測控制算法進(jìn)行預(yù)測和控制,利用控制器對PWM整流器進(jìn)行魯棒性調(diào)節(jié),實(shí)現(xiàn)了對畸變電網(wǎng)下PWM整流器的魯棒控制。最后,通過仿真實(shí)驗(yàn)驗(yàn)證了該預(yù)測控制算法的可行性和有效性。

關(guān)鍵詞:畸變電網(wǎng);PWM整流器;魯棒控制;預(yù)測控制;RBF神經(jīng)網(wǎng)絡(luò)

Abstract:Distortedpowergridhasbeenwidelyexistinmodernindustrialproduction,anditscomplexityandinstabilityhaveprofoundimpactonthestableoperationofpowersystem.InordertosolvetherobustcontrolproblemofPWMrectifierunderdistortedpowergrid,thispaperproposesasolutionbasedonpredictivecontrol.Firstly,byestablishingthedynamicmathematicalmodelofPWMrectifierunderdistortedpowergrid,usingthesystemidentificationtechnologybasedonneuralnetworkforparameteridentification,weestablishedasystemmodelthatcanaccuratelyreflectthecharacteristicsofdistortedpowergrid.Then,thepredictivecontrolalgorithmbasedonRBFneuralnetworkisusedforpredictionandcontrol,andthecontrollerisusedtoadjusttherobustnessofPWMrectifier,realizingtherobustcontrolofPWMrectifierunderdistortedpowergrid.Finally,thefeasibilityandeffectivenessofthepredictivecontrolalgorithmareverifiedbysimulationexperiments.

Keywords:Distortedpowergrid;PWMrectifier;Robustcontrol;Predictivecontrol;RBFneuralnetworInrecentyears,theuseofpowerelectronics-basedsystemssuchasPWMrectifiershasincreasedrapidlyduetotheirhighefficiencyandexcellentperformance.However,theoperationofsuchsystemsinadistortedpowergridcancausesignificantchallenges.Thedistortioninthepowergridcanresultinseveralissuessuchasreducedpowerquality,decreasedsystemefficiency,andeveninstability.Therefore,therobustcontrolofPWMrectifiersunderdistortedpowergridconditionshasbecomeanimportantresearchtopic.

Toaddressthischallenge,apredictivecontrolalgorithmbasedonRBFneuralnetworkisproposedinthisstudy.ThealgorithmutilizestheRBFneuralnetworktopredicttheoutputvoltageandcurrentofthePWMrectifierunderdifferentoperatingconditions.ThepredictedvaluesarethenusedbythecontrollertoadjusttherobustnessofthePWMrectifier.ThecontrolobjectiveistomaintainthedesiredoutputvoltageandcurrentofthePWMrectifierunderdistortedpowergridconditions.

Theproposedalgorithmwastestedthroughsimulationexperiments.TheresultsshowedthatthealgorithmwasabletoeffectivelymaintainthedesiredoutputvoltageandcurrentofthePWMrectifierunderdistortedpowergridconditions.ThesimulationsalsoshowedthattheproposedalgorithmhadbetterperformancecomparedtotraditionalPIcontrollers.

Inconclusion,theproposedpredictivecontrolalgorithmbasedonRBFneuralnetworkisaneffectivewaytoachieverobustcontrolofPWMrectifiersunderdistortedpowergridconditions.ThealgorithmcanimprovetheperformanceandstabilityofPWMrectifiers,henceimprovingpowerqualityandefficiency.FurtherresearchcanbeconductedtooptimizethealgorithmforpracticalapplicationsInadditiontotheproposedalgorithmbasedonRBFneuralnetwork,thereareotheradvancedcontrolstrategiesthatcanbeusedforPWMrectifiers.Onesuchstrategyisthemodelpredictivecontrol(MPC)whichisgainingincreasedattentioninrecentyearsduetoitsabilitytohandlecomplexcontrolproblems.MPCisapredictivecontrolmethodthatusesamathematicalmodelofthesystemtopredictthesystem'sfuturebehaviorandoptimizeacostfunctionoverafinitehorizon.TheadvantageofMPCovertraditionalcontroltechniquesisthatitcanhandleconstraintsanduncertainties,makingitasuitablechoiceforpowerelectronicssystems.

AnothercontrolstrategythatcanbeusedforPWMrectifiersisadaptivecontrol.Adaptivecontrolisatypeofcontrolthatadjuststhecontrollerparametersbasedonthechangesinthesystem'sdynamics.Thismeansthatthecontrollercanadapttovaryingoperatingconditions,makingitmoreflexibleandrobust.However,adaptivecontrolrequiresathoroughunderstandingofthesystem,andthedesignofthecontrollercanbemorechallengingcomparedtotraditionalcontrolmethods.

Moreover,theapplicationofartificialintelligence()techniquessuchasfuzzylogic,geneticalgorithms,andreinforcementlearning,hasshownpromisingresultsinthecontrolofpowerelectronicssystems.Forinstance,thefuzzylogiccontroller(FLC)isanon-linearcontroltechniquethatcanhandleuncertaintiesandnon-linearitiesinthesystem.FLCcanbeusedtodevelopacost-effectivecontrolstrategyforPWMrectifiersthatcanachievegoodperformanceunderdistortedpowergridconditions.

Inconclusion,thecontrolofPWMrectifiersisachallengingtaskduetothenon-linearandcomplexnatureofthesystem,andthepresenceofdistortedpowergridconditions.However,advancedcontrolstrategiessuchasMPC,adaptivecontrol,and-basedtechniquesofferapromisingapproachforachievingrobustandefficientcontrolofPWMrectifiers.FutureresearchcanfocusonthedevelopmentandimplementationoftheseadvancedcontrolstrategiesforpracticalapplicationsOneareaofresearchforfuturedevelopmentinPWMrectifiersistheintegrationwithrenewableenergysources,suchaswindandsolarpower.Thefluctuatingnatureofrenewableenergysourcescreateschallengesforstableandefficientoperationofthepowergrid.PWMrectifierscanplayaroleinbalancingthepowersupplyanddemand,andadvancedcontrolstrategiescanbedevelopedtooptimizetheperformanceofthepowergrid.

AnotherareaofresearchistheapplicationofPWMrectifiersinelectricvehicles.Withtheincreasingpopularityofelectricvehicles,thedemandforefficientandreliablepowerconvertersisgrowing.PWMrectifierscanbeusedasbatterychargersandmotordrivesinelectricvehicles.Advancedcontrolstrategiescanbeemployedtoensuresafeandfastcharging,andhigh-performancemotorcontrol.

Moreover,thedevelopmentofhardware-in-the-loop(HIL)simulationplatformscanfacilitatethetestingandvalidationofadvancedcontrolstrategiesforPWMrectifiers.HILsimulationallowsthecontrolalgorithmstobetestedinarealisticenvironment,withouttheneedforexpensiveandtime-consuminghardwaretesting.HILsimulationcanacceleratethedevelopmentanddeploymentofadvancedcontrolstrategiesforPWMrectifiers,andhelptoimprovetheefficiencyandreliabilityofpowerelectronicssystems.

Finally,theintegrationofartificialintelligence()techniques,suchasdeeplearningandreinforcementlearning,canfurtherenhancetheperformanceofPWMrectifiers.techniquescanlearnfromthesystembehaviorandadaptthecontrolstrategiesinreal-time,leadingtoimprovedefficiency,robustness,andreliability.However,thedevelopmentof-basedcontrolalgorithmsrequireslargeamountsoftrainingdataandcomputationalpower,andcarefulconsiderationofsafetyandethicalconcerns.

Insummary,thecontrolofPWMrectifiersisachallengingtask,butadvancedcontrolstrategiesandresearchareassuchasrenewableenergyintegration,electricvehicles,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論