版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)中考總復(fù)習(xí)資料完整版
一有理數(shù)
___________________I
知識要點(diǎn)
1、有理數(shù)的基本概念
(1)正數(shù)和負(fù)數(shù)
定義:大于0的數(shù)叫做正數(shù)。在正數(shù)前加上符號(負(fù))的數(shù)叫做負(fù)數(shù)。
0既不是正數(shù),也不是負(fù)數(shù)。
(2)有理數(shù)
正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù)。正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)。整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
2、數(shù)軸
規(guī)定了原息、正方向和單位長度的直線叫做數(shù)軸。
3、相反數(shù)
代數(shù)定義:只有符號不同的兩個數(shù)叫做互為相反數(shù)。
幾何定義:在數(shù)軸上原點(diǎn)的兩旁,離開原點(diǎn)距離相等的兩個點(diǎn)所表示的數(shù),叫做互為相反數(shù)。
一般地,a和互為相反數(shù)。0的相反數(shù)是0。
a=-a所表示的意義是:一個數(shù)和它的相反數(shù)相等。很顯然,a=0。
4、絕對值
定義:一般地,數(shù)軸上表示數(shù)。的點(diǎn)與原點(diǎn)的距離叫做數(shù)。的絕對值,記作I'。
一個正數(shù)的絕對值是它本身:一個負(fù)數(shù)的絕對值是它的相反數(shù):0的絕對值是0。
即:如果a>0,那么|a|=a;
如果a=0,那么㈤=0;
如果a<0,那么|a|=-a。
an〃所表示的意義是:一個數(shù)和它的絕對值相等。很顯然,
5、倒數(shù)
定義:乘積是1的兩個數(shù)互為倒數(shù)。
a=?!?所表示的意義是:一個數(shù)和它的倒數(shù)相等。很顯然,“=±1。
a
6、數(shù)的比較大小
法則:正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);兩個負(fù)數(shù),絕對值大的反而小。
7、乘方
定義:求〃個相同因數(shù)的積的運(yùn)算,叫做乘方。乘方的結(jié)果叫做事。
如:優(yōu)=4?4??一?。讀作“的"次方(累),在a"中,a叫做底數(shù),〃叫做指數(shù)。
性質(zhì):負(fù)數(shù)的奇次幕是負(fù)數(shù),負(fù)數(shù)的偶次基是正數(shù);正數(shù)的任何次事都是正數(shù);0的任何正整數(shù)
次募都是0。
8、科學(xué)記數(shù)法
定義:把一個大于10的數(shù)表示成“X10"的形式(其中。大于或等于1且小于10,“是正整數(shù)),
這種記數(shù)方法叫做科學(xué)記數(shù)法。小于70的數(shù)也可以類似表示。
用科學(xué)記數(shù)法表示一個絕對值大于10的數(shù)時,n是原數(shù)的整數(shù)數(shù)位減1得到的正整數(shù)。
用科學(xué)記數(shù)法表示一個絕對值小于1的數(shù)X1Q-")時,〃是叢小數(shù)點(diǎn)后開始到第一個不是0的
數(shù)為止的數(shù)的個數(shù)
-1-
9、近似數(shù)
一般地,一個近似數(shù)四舍五入到哪一位,就說這個數(shù)近似到哪一位,也叫做精確到哪一位。精確
到十分位一一精確到0.1;精確到百分位一一精確到0.01;…。
10、有理數(shù)的加法
加法法則:同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加,取
絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一
個數(shù)同0相加,仍得這個數(shù)。
加法運(yùn)算律:①交換律a+b=b+a;②結(jié)合律(a+b)+c=a+(b+c)。
11、有理數(shù)的減法
減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。即:a-b=a+(~bK
12、有理數(shù)的乘法
乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。任何數(shù)與0相乘,都得0。
乘法運(yùn)算律:①交換律3;②結(jié)合律(")c=aSc);③分配律aS+c)=H+ac。
13、有理數(shù)的除法
除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。即:=
b
兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。
14、有理數(shù)的混合運(yùn)算
混合運(yùn)算的順序:①先乘方,再乘除,最后加減:②同級運(yùn)算,從左到右進(jìn)行;③如有括號,先
做括號內(nèi)的運(yùn)算,按小括號、中括號、大括號依次進(jìn)行。
課標(biāo)要求
1、理解有理數(shù)的意義,能用數(shù)軸上的點(diǎn)表示有理數(shù),能比較有理數(shù)的大小。
2、借助數(shù)軸理解相反數(shù)和絕對值的意義,掌握求有理數(shù)的相反數(shù)與絕對值的方法,知道IaI的
含義(這里。表示有理數(shù))。
3、理解乘方的意義,掌握有理數(shù)的加、減、乘、除、乘方及簡單的混合運(yùn)算(以三步以內(nèi)為主).
4、會用科學(xué)記數(shù)法表示數(shù)(包括負(fù)指數(shù)基的科學(xué)記數(shù)法)
5、理解有理數(shù)的運(yùn)算律,能運(yùn)用運(yùn)算律簡化運(yùn)算。
6、能運(yùn)用有理數(shù)的運(yùn)算解決簡單的問題。
7、了解近似數(shù),在解決實際問題中,會按問題的要求對結(jié)果取近似值。
常見考點(diǎn)
1、有理數(shù)的實際意義。
2、求一個數(shù)的相反數(shù)、絕對值、倒數(shù);在數(shù)軸上找出相應(yīng)的數(shù);數(shù)的比較大小。
3、用科學(xué)記數(shù)法表示一個數(shù)(含負(fù)指數(shù)塞的科學(xué)記數(shù)法)。
4、有理數(shù)基本概念(相反數(shù)、絕對值、倒數(shù))的辨析及綜合運(yùn)用。
5、有理數(shù)的運(yùn)算。
____________fl
專題訓(xùn)練
1、若收入100元記作+100元,那么支出60元記作元。
2、在記錄氣溫時,若零上5度記作+5C,那么零下5度記作()
A、5cB、-5℃C、0℃D、-10℃
3、3的相反數(shù)是,-5的倒數(shù)是,-3的絕對值是
-2-
4、2的相反數(shù)的倒數(shù)是
5、計算:-(-2)=,|-51=
6、下列說法不正確的是()
A、0的相反數(shù)、絕對值都是0B、立方等于它本身的數(shù)有3個
C、平方等于它本身的數(shù)有2個D、倒數(shù)等于它本身的數(shù)有1個
7、數(shù)軸上表示-3的點(diǎn)到原點(diǎn)的距離是(
B、-3D、——
3
8、扎西在畫數(shù)軸時,不小心把一滴墨水滴在已經(jīng)畫好的數(shù)軸上。如圖所示,請根據(jù)圖中標(biāo)出的數(shù),
寫出被墨水蓋住的整數(shù):?
9、計算:1+3=,-1+(-3)=,-1+3=,1+(-3)=。
1-3=,-1-(-3)-,-1-3=,1-(-3>。
1x3=,-1x(-3)=,-1x3=,1x(-3)=o
H3=,-1^(-3)=,-H3=,R(-3)=。
10、地球上的陸地面積約為149000000平方公里,那么用科學(xué)記數(shù)法表示149000000應(yīng)為()
A、1.49X106B、1.49X107C、1.49xl08D、1.49xl09
11、光年是天文學(xué)中的距離單位,1光年大約是9500000000000km,則這個數(shù)用科學(xué)記數(shù)法表示
應(yīng)為。
12、甲型H1N1流感病毒變異后的直徑為0.00000013米,這個數(shù)用科學(xué)記數(shù)法表示應(yīng)該是()
A、1.3x106B、1.3x10"C、1.3xl0xD、1.3xl0-9
13、近年來,我國大部分地區(qū)飽受“四面霾伏”的困擾。霾的主要成分是PM2.5,是指直徑小于
或等于0.0000025m的顆粒物。那么數(shù)0.0000025用科學(xué)記數(shù)法可表示為()
A、25X105B、25X10"C、2.5X105D、2.5X106
14、2.396弋(精確到百分位)2.396七(精確到十分位)
15、在0,-2,1,』這四個數(shù)中,最小的數(shù)是()
2
A、0B、-2C、1D、一
16、若。的相反數(shù)是最大的負(fù)整數(shù),〃是絕對值最小的數(shù),則。+力=
17、如果。的倒數(shù)是-1,那么〃2。14等于()
C、2014D、-2014
18、已知a、6互為相反數(shù),C、d互為倒數(shù),則m+〃)2°l2+(cd)232二。
19、某天早晨的氣溫是-7℃,中午上升了11℃,那么中午的氣溫是°C。
20、日喀則某天的最高氣溫是10C,最低氣溫是-8℃,那么這天日喀則的最高氣溫比最低氣溫高
A、-18℃B、-2℃C、2℃D、18℃
21、計算:(一2)3x3+16+[(—3)2x2—(—2)4]。
-3-
中考總復(fù)習(xí)2實數(shù)
___________________I
知識要點(diǎn)
1、平方根
定義1:一般地,如果一個正數(shù)x的平方等于a,即f=a,那么這個正數(shù)X叫做。的算術(shù)平方根。
”的算術(shù)平方根記作讀作“根號a”,〃叫做被開方數(shù)。即》=而。
規(guī)定:0的算術(shù)平方根是0。
定義2:一般地,如果一個數(shù)的平方等于a,那么這個數(shù)叫做”的平方根或二次方根。即如果f=a,
那么x叫做a的平方根。即x=+y[a。
定義3:求一個數(shù)。的平方根的運(yùn)算,叫做開平方。
正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒有平方根。
2、立方根
定義:一般地,如果一個數(shù)的立方等于a,那么這個數(shù)叫做。的立方根或三次方根。即如果
那么x叫做。的立方根,記作標(biāo)。即x=^。
求一個數(shù)的立方根的運(yùn)算,叫做開立方。
正數(shù)的立方根是正數(shù);負(fù)數(shù)的立方根是負(fù)數(shù):0的立方根是0。
3、無理數(shù)
無限不循環(huán)小數(shù)又叫做無理數(shù)。
4、實數(shù)
有理數(shù)和無理數(shù)統(tǒng)稱實數(shù)。即實數(shù)包括有理數(shù)和無理數(shù)。
備注:最小的正整數(shù)是1,最大的負(fù)整數(shù)是T,絕對值最小的數(shù)是0。
有理數(shù)關(guān)于相反數(shù)和絕對值的意義同樣適合于實數(shù)。
5、實數(shù)的分類
分法一:
J■正有理數(shù)[有限小數(shù)或
「有理數(shù)位有理J無限循環(huán)小數(shù)
實數(shù)4〔負(fù)有理數(shù)〕
「正無理數(shù)]
I無理數(shù)3卜無限不循環(huán)小數(shù)
I負(fù)無理數(shù)J
分法二:
,正實數(shù)
實數(shù)0
,負(fù)實數(shù)
6、實數(shù)的比較大小
有理數(shù)的比較大小的法則在實數(shù)范圍內(nèi)同樣適用。
備注:遇到有理數(shù)和帶根號的無理數(shù)比較大小時,讓“數(shù)全部回到根號下”,再比較大小。
7、實數(shù)的運(yùn)算
-4-
在實數(shù)范圍內(nèi),可以進(jìn)行加、減、乘、除、乘方及開方運(yùn)算,而且有理數(shù)的運(yùn)算法則和運(yùn)算律在
實數(shù)范圍內(nèi)仍然成立。實數(shù)范圍內(nèi)混合運(yùn)算的順序:①先乘方開方,再乘除,最后加減;②同級運(yùn)算,
從左到右進(jìn)行:③如有括號,先做括號內(nèi)的運(yùn)算,按小括號、中括號、大括號依次進(jìn)行。
課標(biāo)要求
1、了解平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、算術(shù)平方根、立方根。
2、了解乘方與開方互為逆運(yùn)算,會用平方運(yùn)算求百以內(nèi)整數(shù)的平方根,會用立方運(yùn)算求百以內(nèi)整
數(shù)(對應(yīng)的負(fù)整數(shù))的立方根。
3、了解無理數(shù)和實數(shù)的概念,知道實數(shù)與數(shù)軸上的點(diǎn)一一對應(yīng),能求實數(shù)的相反數(shù)與絕對值。
4、能用有理數(shù)估計一個無理數(shù)的大致范圍。
常見考點(diǎn)
1、求一個數(shù)的算術(shù)平方根、平方根、立方根。
2、根據(jù)已知數(shù)的算術(shù)平方根(或立方根)求對應(yīng)的數(shù)的算術(shù)平方根(或立方根)。
3、實數(shù)與數(shù)軸上點(diǎn)的對應(yīng)關(guān)系,判斷一個無理數(shù)的取值范圍,實數(shù)的比較大小。
4、實數(shù)的分類;求一個實數(shù)的相反數(shù)、絕對值。
5、實數(shù)的加、減、乘、除、乘方、開方及混合運(yùn)算(常與銳角三角函數(shù)值結(jié)合)。
■
專題訓(xùn)練
1、9的算術(shù)平方根是^。
2、的算術(shù)平方根是()
A、4B、±4C、2D、±2
3、4的平方根是_______________o
4,-8的立方根是______________。
5、數(shù)L一戲,(V2)2,瓜,兀2,
后中,無理數(shù)有()個。
3
A、3B、4C、5D、6
6、已知代。1.732,那么同5處()
A、0.1732B、1.732C、17.32D、173.2
7、、回-五的相反數(shù)是_____________
絕對值是______________O
8、后的相反數(shù)是,絕對值是,倒數(shù)是
9>比較大小:-3.14_____________-7t273____________3&
10、如圖,數(shù)軸上點(diǎn)P表示的數(shù)可能是()
P
----1?1-----11——1----11-----
A、幣B、-V7C、-3.2D、-而-3-2-10123
11、估計我的值()
A、在3到4之間B、在4到5之間C、在5到6之間D、在6到7之間
-5-
12>已知Jx+1+|y-2|+(z-3>=0,則A,y=,z=
中考總復(fù)習(xí)3整式
___________________I
知識要點(diǎn)
1、定義
(1)單項式:用數(shù)或字母的乘積表示的式子叫做單項式。單獨(dú)的一個數(shù)或一個字母也是單項式。
單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。一個單項式中,所有字母的指數(shù)的和叫做這個單項
式的次數(shù)。
(2)多項式:幾個單項式的和叫做多項式。其中,每個單項式叫做多項式的項,不含字母的項叫做
常數(shù)項。多項式里,次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。
單項式與多項式統(tǒng)稱整式。
(3)同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
(4)合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。
合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母連同它的指數(shù)不變。
2、整式的運(yùn)算
(1)整式的加減:幾個整式相加減,如有括號就先去括號,然后再合并同類項。
去括號法則:同號得正,異號得負(fù)。即括號外的因數(shù)的符號決定了括號內(nèi)的符號是否改變:
如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;
如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。
(2)整式的乘除運(yùn)算
①同底數(shù)幕的乘法:同底數(shù)基相乘,底數(shù)不變,指數(shù)相加。
②塞的乘方:基的乘方,底數(shù)不變,指數(shù)相乘。
③積的乘方:m①積的乘方,等于把積的每一個因式分別乘方,再把所得的事相乘。
④單項式與單項式的乘法:單項式與單項式相乘,把它們的系數(shù)、同底數(shù)累分別相乘,對于只在
一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式。
⑤單項式與多項式的乘法:pm+8+c)=pn+pZ>+pc。單項式與多項式相乘,就是用單項式去乘多項式
的每一項,再把所得的積相加。
⑥多項式與多項式的乘法:(a+b)(p+q)=〃p+“q+z?p+儀。多項式與多項式相乘,先用一個多項式的
每一項乘另一個多項式的每一項,再把所得的積相加。
平方差公式:(4+8)3?)=/-〃。兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。這個
公式叫做平方差公式。
完全平方公式:(。+與2=/+2必+廿,(。-份2=/-2"+/。兩個數(shù)的和(或差)的平方,等于它們的平
方和,加上(或減去)它們積的2倍。這兩個公式叫做完全平方公式。
⑦同底數(shù)嘉的除法:同底數(shù)幕相除,底數(shù)不變,指數(shù)相減。
任何不等于0的數(shù)的0次幕都等于1。
⑧單項式與單項式的除法:單項式相除,把系數(shù)與同底數(shù)幕分別相除作為商的因式,對于只在被
除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
⑨多項式除以單項式:多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得
的商相加。
注:以上公式及法則在分式和二次根式的運(yùn)算中同樣適用。
(3)添括號法則
同號得正,異號得負(fù)。即括號前的符號決定了括號內(nèi)各項的符號是否改變:
-6-
如果括號前面是正號,括到括號里的各項都不變符號;
如果括號前號是負(fù)號,括到括號里的各項都改變符號。
3、因式分解
定義:把一個多項式化成了幾個整式的積的形式,這樣的式子變形叫做這個多項式的因式分解,
也叫做把這個多項式分解因式。
以上公式都可以用來對多項式進(jìn)行因式分解,因式分解的常用方法:
①提公因式法:pa+pb+pc=p(a+b+c);
2222222
②公式法:a-b=(a+b)(a-b);a+2<zZ>+/?=(a+fe);(^-2ab+b-(a-b)o
■.
課標(biāo)要求
1、了解整數(shù)指數(shù)暴的意義和基本性質(zhì)。
2,理解整式的概念,掌握合并同類項和去括號的法則,能進(jìn)行簡單的整式加法和減法運(yùn)算;能進(jìn)
行簡單的整式乘法運(yùn)算(其中多項式相乘僅指一次式之間以及一次式與二次式相乘)。
3、能推導(dǎo)乘法公式:(a+b)(a-b)=a?-戶(a±b)2-a2±2ab+b2,了解公式的幾何背景,并能
利用公式進(jìn)行簡單計算。
4、能用提公因式法、公式法(直接利用公式不超過二次)進(jìn)行因式分解(指數(shù)是正整數(shù))。
常見考點(diǎn)
1、考查學(xué)生對基本概念的認(rèn)識及運(yùn)用,如列代數(shù)式、求系數(shù)和次數(shù)、同類項等。
2、基本公式(同底數(shù)基的乘除法、嘉的乘方、積的乘方)的應(yīng)用。
3、運(yùn)用整式乘除法公式、整式加減運(yùn)算法則、整式乘法運(yùn)算特殊公式進(jìn)行計算。
4、利用提公因式法、公式法進(jìn)行因式分解。
5、相關(guān)知識的綜合應(yīng)用,如找規(guī)律,定義新運(yùn)算等。
專題訓(xùn)練
1、-2a263c4的系數(shù)是,次數(shù)是。
2、若單項式與一5x"y3是同類項,則m=,n=。m+n=
(m-/?)2012=。
3、下列計算正確的是()
A、a2-a3=a6B、W牙二〉C、3m+3n=3mnD、(x3)2=x6
4、下列計算正確的是()
.224339/5_8
A、x+x^=xB、jr-x=xLC、X,X-XD、(f)4=X6
5、下列運(yùn)算正確的是()
廠
A、x3+x3=x6x2-x4=x8C>xJ2-.x2=x6Dn^x2x4=x6
6、下列運(yùn)算正確的是()
A^a3-a2=aB、(tz3)4=6t7C、21+5〃3=7Q6D、a^-a
7、下列計算不正確的是()
26442
A、/B、a+a=aC>a=aD、(<2)=
8、計?算:(-2<J2*3C)3=?
9、計算:(-/尸+/=
-7-
10、計算(12刀?+20;(5,5)+(-4/)3)的結(jié)果是()
A、3dy3+5yB、-Sx2y3C、-3。3-5,Ds
11、化簡求值:(3x4-2)(3%-2)-5x(x-1)-(2x-1)2,其中x=l。
12>分解因式:公-9=;f+6x+9=;
2JC3+8X2+8X=;aib-ab3-
13、若9x2+mr),+16)?是一個完全平方式,則機(jī)的值是()
A、12B、24C、±12D、±24
14、一組按規(guī)律排列的多項式:a+b,a3+b5t......其中第io個式子是()
A、/+/B、C、心-盧D、盧
15、用☆定義一種新運(yùn)算:對于任意實數(shù)a、b,都有“☆6=廬+1,則5+3=。
16、某人設(shè)計了一個計算程序,當(dāng)輸入任意實數(shù)對(〃,切時,會得到一個新的實數(shù):c^+h+\.如
輸入(3,-2)時,會得到32+(-2)+1=8。現(xiàn)輸入(-3,4),得到的數(shù)是。
17、觀察下列一組圖形的規(guī)律:
△△☆▲□△△☆▲口△△☆▲口△△……
猜一猜第2014個圖形應(yīng)該是()
A、△B、☆C、▲D、口
18、下面是一個有規(guī)律排列的數(shù)表:
第1列第2列第3列第4列第5列
,11111
第AA1行一
12345
22222
第2行一
12345
33333
第3行—
12345
上面數(shù)表中第9行、第7列的數(shù)是O
19、科學(xué)發(fā)現(xiàn):植物的花瓣、萼片、果實的數(shù)目以及其他方面的特征,都非常吻合于一個奇特的
數(shù)列一一著名的斐波那契數(shù)列:1,1,2,3,5,8,13,21,34,55,……仔細(xì)觀察以上數(shù)列,則它
的第11個數(shù)應(yīng)該是。
20、用黑白兩種顏色的正六邊形地面磚按如下所示的規(guī)律,拼成若干個圖案:
(2)第〃個圖案中白色地面磚有塊。
-8-
中考總復(fù)習(xí)4分式
知識要點(diǎn)
1、分式的定義
A
一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子]叫做分式。
注:4、B都是整式,8中含有字母,且B/0。
2、分式的基本性質(zhì)
分式的分子與分母乘(或除以)同一個不等于0的整式,分式的值不變。
AA-CAA4-C
B-BC'B-B^C°
3、分式的約分和通分
定義1:根據(jù)分式的基本性質(zhì),把一個分式的分子與分母的公因式約去,叫做分式的約分。
定義2:分子與分母沒有公因式的分式,叫做最簡分式。
定義3:根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,
叫做分式的通分。
定義4:各分母的所有因式的最高次基的積叫做最簡公分母。
4、分式的乘除
nrCl,C
①乘法法則:=o分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。
bab-a
②除法法則:-4--=--=—分式除以分式,把除式的分子、分母顛倒位置后,與被除
babeb'Co
式相乘。
-=々。分式乘方要把分子、分母分別乘方。
b)b
④整數(shù)負(fù)指數(shù)幕:區(qū)"=4。
a
5、分式的加減
同分母分式相加減,分母不變,把分子相加減;
異分母分式相加減,先通分,變?yōu)橥帜傅姆质?,再加減。
①同分母分式的加減:上±±=上二巳;
CCC
八e八、上。,cadhead±bc
②異分母分式的加法:-±-=—It—=——o
babababa
注:不論是分式的咖種運(yùn)算,都要先進(jìn)行因式分解。
課標(biāo)要求
1、了解分式和最簡分式的概念,能利用分式的基本性質(zhì)進(jìn)行約分和通分;
2、能進(jìn)行簡單的分式加、減、乘、除運(yùn)算;
-9-
常見考點(diǎn)
1、分式的概念、意義,如求分式中字母的取值范圍、分式為0的條件及相應(yīng)的綜合運(yùn)用。
2、運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。
3、運(yùn)用分式的加、減、乘、除法則進(jìn)行分式的化簡、代入求值。
4、考查學(xué)生對負(fù)整數(shù)指數(shù)累的理解。
專題訓(xùn)練
1、分式上3一有意義的條件是_______
o
2x-l
2r-4
2、若分式------的值為0,那么廣()
X+1
A、1B、-1C、2D、4
|r|-3
3、若分式口一的值為0,那么廣()
x+3
A、3B、-3C、±3D、無解
4、下列運(yùn)算錯誤的是()
B-a-b_1
A^—=——(cWO)
bhea+b
Co.5a+b=5a+\0bD口=匕
0.2a-0,3b2a-3byy+x
9r
5、如果把分式——中的x和y都擴(kuò)大3倍,那么分式的值()
x-\-y
A、擴(kuò)大3倍B、縮小3倍C、縮小6倍D^不變
6、如果把分式上”中的x和y都擴(kuò)大3倍,那么分式的值()
x+y
A、擴(kuò)大3倍B、縮小3倍C、縮小6倍D、不變
7、計算:2m+n=_
2m-nn-2m
2住簡4“:b的姑奧
o51nJ1口口A/tA)
2a—bb—2a
A、-2a-bB、b-2aC、2a-bD、b^2a
八..…ab-b2
9、化間:———-=o
a--b'
-10-
xy+xy
約分:
2xy
2a%
計算:
計算:,3々=
計算:++2-
3_Q1
14、先化簡再求值:3廠r+一r-------,其中x=2。
x~—1x+1x—1
15、先化簡,再求值:三畢中二十三土身,(其中42,產(chǎn)2015)。
x-y-x-y
16、化簡求值:(―------匚]+」,(其中產(chǎn)-1)。
(x—2x+2)x—2
-11-
中考總復(fù)習(xí)5二次根式
知識要點(diǎn)
J
1、二次根式的定義
一般地,形如JZ(a》O)的式子叫做二次根式。
2、二次根式的基本性質(zhì)
①(&)2=a(a20);②—a(a20);=|fl|(a取全體實數(shù))。
3、二次根式的乘除
(1)二次根式的乘法:①&忑;②與=&鵬(a-O,b引0)。
[a_s[a
(2)二次根式的除法:②(a》0,/?>0)o
4、最簡二次根式
最簡二次根式滿足的條件:①被開方數(shù)不含分母;②被開方數(shù)中不含能開得盡方的因數(shù)或因式。
5、二次根式的加減
二次根式加減時,可以先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。
課標(biāo)要求
1、了解二次根式、最簡二次根式的概念,
2、了解二次根式(根號下僅限于數(shù))加、減、乘、除運(yùn)算法則,會用它們進(jìn)行有關(guān)的簡單四則運(yùn)算。
常見考點(diǎn)
1、二次根式的概念,求二次根式中字母的取值范圍及相應(yīng)的綜合運(yùn)用。
2、利用二次根式的基本性質(zhì)進(jìn)行運(yùn)算。
3、運(yùn)用二次根式的乘除、加減法則進(jìn)行二次根式的化簡,最簡二次根式。
4、有關(guān)代數(shù)式的綜合運(yùn)算。
專題訓(xùn)練
1、H”在實數(shù)范圍內(nèi)有意義的條件是
■Jx—2
2、若式子機(jī)在實數(shù)范圍內(nèi)有意義,則x的取值范圍是
x-3
3、下列二次根式中,最簡二次根式是()
-12-
A、243aB、7/
C、78?
4、計算:(-2揚(yáng)2=;卜3)2=;V2XV6=
5、計算:V8-V2=o
6、下面計算正確的是()
A、3+6=3gB、扃+6=3C、20=&D、”=±2
7、計算:T75+V24-V12-V54
8、計算:(TT+1)--\/l2+1—Vsj
9、計算:(石+J7)2—(J7+J^)Q7一?)
10、求代數(shù)式小+的”2的值,其中x=g+血,y=J5一后。
-13-
中考總復(fù)習(xí)6一次方程(組)
知識要點(diǎn)
1、定義
定義1:含有未知數(shù)的等式叫做方程。
定義2:只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1,等號兩邊都是整式的方程叫做一元一次
方程。
定義3:使方程中等號左右兩邊相等的未知數(shù)的值叫做方程的解。
定義4:含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是I的方程叫做二元一次方程。
定義5:把兩個方程合在一起,就組成了方程組。
定義6:方程組中有兩個未知數(shù),含有每個未知數(shù)的項的次數(shù)都是1,并且一共有兩個方程,這
樣的方程組叫做二元一次方程組。
定義7:使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解。
定義8:二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
2、等式的性質(zhì)
性質(zhì)1:若a=b,則a土Gb土部等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
性質(zhì)2:若"%,則如=加;-=-(^0),等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)
ccc
果仍相等。
3、解一元一次方程的一般步驟
①去分母;②去括號;③移項;④合并同類項;⑤系數(shù)化為1。
4、解二元一次方程組的方法
①代入消元法;②加減消元法。
代入消元法:把二元一次方程組中一個方程的一個未知數(shù)用含另一個未知數(shù)的式子表示出來,再
代入另一個方程,實現(xiàn)消元,進(jìn)而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代
入法。
加減消元法:當(dāng)二元一次方程組的兩個方程中同一未知數(shù)的系數(shù)相反或相等時,把這兩個方程的
兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程。這種方法叫做加減消元法,簡
稱加減法。
5、方程(組)與實際問題
解有關(guān)方程(組)的實際問題的一般步驟:
第1步:審題。認(rèn)真讀題,分析題中各個量之間的關(guān)系。
第2步:設(shè)未知數(shù)。根據(jù)題意及各個量的關(guān)系設(shè)未知數(shù)。
第3步:列方程(組)。根據(jù)題中各個量的關(guān)系列出方程(組).
第4步:解方程(組)。根據(jù)方程(組)的類型采用相應(yīng)的解法。
第5步:答。
■
課標(biāo)要求
1、能根據(jù)具體問題中的數(shù)量關(guān)系列出方程,體會方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型。
-14-
2、經(jīng)歷估計方程解的過程。
3、掌握等式的基本性質(zhì)。
4、能解一元一次方程。
5、掌握代入消元法和加減消元法,能解二元一次方程組。
常見考點(diǎn)
1、方程(組)與方程(組)的解,解一次方程(組)。
2、應(yīng)用一次方程(組)解決實際問題。
3、應(yīng)用一次方程(組)解決相關(guān)綜合問題。
專題訓(xùn)練
1、關(guān)于x的方程(〃L1)X+,〃=5的解為1,則〃2=()
A、2B、3C、4D、5
2、有一個密碼系統(tǒng),其原理如圖所示:I輸入x|f由輸出I,當(dāng)輸出為10時,則輸入的
3、解方程:—+x=3--o
23
5-弘
4、當(dāng)Z取何值時,代數(shù)式—土和左+5互為相反數(shù)?
2
5已知x=2,y=l是方程ar-3y=5的解,則a=()
A、2B、1C、3D、4
…x+y=4②戶+3y=5
6、解方程組:①
[2x-y=53x+2y=10
-15-
7、在一次體育課上,央宗班里有一半同學(xué)在打籃球,三分之一的同學(xué)在踢足球,七分之一的同學(xué)
在打羽毛球。只有央宗一人因生病住院而沒有上體育課。請問央宗班里共有多少人?
8、李老師為學(xué)校購買知識競賽的獎品,購買了兩種筆記本,共25本,單價分別為2元和5元,
結(jié)果共花了95元。問兩種筆記本各多少本?
9、西藏某旅游景點(diǎn),某周共售出1000張門票,門票收入共為6950元。已知成人票每張8元,學(xué)
生票每張5元。問這一周成人票、學(xué)生票各售出多少張?
10、根據(jù)圖中給出的信息,求出每件襯衫和每瓶礦泉水的價格。
共計44元
共計26元
-16-
中考總復(fù)習(xí)7分式方程
知識要點(diǎn)
1、定義
分母中含有未知數(shù)的方程叫做分式方程。
2、分式方程的解法
①將分式方程化成整式方程(去分母,即等號兩邊同乘以最簡公分母);
②解整式方程(去括號;移項;合并同類項;系數(shù)化為1或其它解法);
③檢驗。
3、分式方程與實際問題
解有關(guān)分式方程的實際問題的一般步驟:
第1步:審題。認(rèn)真讀題,分析題中各個量之間的關(guān)系。
第2步:設(shè)未知數(shù)。根據(jù)題意及各個量的關(guān)系設(shè)未知數(shù)。
第3步:列方程。根據(jù)題中各個量的關(guān)系列出方程。
第4步:解方程。根據(jù)方程的類型采用相應(yīng)的解法。
第5步:檢驗。檢驗所求得的根是否滿足題意。
第6步:答。
課標(biāo)要求
1、能解可化為一元一次方程的分式方程。
2、能根據(jù)具體問題的實際意義,檢驗方程的解是否合理。
■
常見考點(diǎn)
1、根據(jù)問題描述列分式方程。
2、解分式方程。
3、應(yīng)用分式方程解決實際問題。
專題訓(xùn)練
|Y—1
1、方程L-土」=1去分母后可得方程()
XX+1
A、2x2+x-1=0B、X2-2x=0C^2x2-x-1=0D、x2+2x-2=0
八”、e「Xx】1…5x+23
2、解方程:①------1=-----(2)-7-----=-------
x—2x—4x+x1
-17-
3、某工人現(xiàn)在平均每天比原來多做20個零件。已知現(xiàn)在做1600個零件和原來做1200個零件所
用的時間相同,問該工人現(xiàn)在平均每天做多少個零件?
4、已知甲做90個零件和乙做120個零件所用的時間相同,又知每小時甲、乙兩人共做35個零件。
問甲、乙每小時各做多少個零件?
5、某車間加工1200個零件后,采用了新工藝,工效是原來的1.5倍,這樣加工同樣多的零件就
少用10小時。問采用新工藝前每小時加工多少個零件?
6、某市在舊城改造過程中,需要整修一段全長2400米的道路,為了盡量減少施工對城市交通所
造成的影響,實際工作效率比原計劃提高了20%,結(jié)果提前8天完成任務(wù)。問原計劃每天修路多少米?
-18-
中考總復(fù)習(xí)8一元二次方程
知識要點(diǎn)
1、定義
等號兩邊都是整式,只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的方程,叫做一元二次方程。
一元二次方程的一般形式是加!+bx+c=O(a¥O)。其中a?是二次項,a是二次項系數(shù);bx是一次
項,b是一次項系數(shù):c是常數(shù)項。
2、一元二次方程的解法
直接開方法、配方法、公式法、因式分解法。
⑴直接開方法。適用形式:?=P、(X+")2=p或(必+”尸=〃。
(2)配方法。套用公式/+2"+/=(4+32;cr-'Zab+b^a-b)1,配方法解一元二次方程的一般步驟是:
①化簡一一把方程化為一般形式,并把二次項系數(shù)化為1;②移項一一把常數(shù)項移項到等號的右
邊;③配方一一兩邊同時加上〃,把左邊配成d+2兒+/的形式,并寫成完全平方的形式;④開方,
即降次;⑤解一次方程。
一"揚(yáng)-癡的形式,
(3)公式法。當(dāng)/-4acN0時,方程ax2+hx+c=O的實數(shù)根可寫為:x=
2a
這個式子叫做一元二次方程—+灰+c=0的求根公式。這種解一元二次方程的方法叫做公式法。
①廿-4配>0時,方程有兩個不相等的實數(shù)根。
-b+yJh2-4ac-b-\b2—4ac
x.=-------------------,x-,=-------------------
12a2a
②信-4ac=0時,方程有兩個相等的實數(shù)根。
b
X\=X2=~~
2a
③戶-4八<0時,方程無實數(shù)根。
定義:/-4ac叫做一元二次方程a?+版+c=o的根的判別式,通常用字母」表示,即
(4)因式分解法。主要用提公因式法、平方差公式。
3、一元二次方程與實際問題
解有關(guān)一元二次方程的實際問題的一般步驟:
第1步:審題。認(rèn)真讀題,分析題中各個量之間的關(guān)系。
第2步:設(shè)未知數(shù)。根據(jù)題意及各個量的關(guān)系設(shè)未知數(shù)。
第3步:列方程。根據(jù)題中各個量的關(guān)系列出方程。
第4步:解方程。根據(jù)方程的類型采用相應(yīng)的解法。
第5步:檢驗。檢驗所求得的根是否滿足題意。
第6步:答。
課標(biāo)要求
1、理解配方法,能用配方法、公式法、因式分解法解數(shù)字系數(shù)的一元二次方程。
-19-
2、會用一元二次方程根的判別式判別方程是否有實根和兩個實根是否相等。
3、能根據(jù)具體問題的實際意義,檢驗方程的解是否合理。
常見考點(diǎn)
J------------------
1、一元二次方程的概念。
2、解一元二次方程,一元二次方程根的判別式的應(yīng)用。
3、應(yīng)用一元二次方程解決實際問題。
4、應(yīng)用一元二次方程解決相關(guān)綜合問題。
.
專題訓(xùn)練
I.....................J
1、若(〃?-3)$+2,亦+,“-1=0是關(guān)于x的一元二次方程,則的取值范圍是()
A、B、C、D、全體實數(shù)
2、方程2f+15廠9=0的根的情況是()
A、有兩個相等的實數(shù)根B、有兩個不相等的實數(shù)根
C、只有一個實數(shù)根D、沒有實數(shù)根
3、已知關(guān)于x的一元二次方程』-2尸加=0有兩個不相等的實數(shù)根,則根的取值范圍是()
A、mNOB、/n<-lC、m>-lD、m<0
4、若x=l是關(guān)于x的一元二次方程(a—2)/一(a2+i)x+5=。的一個根,則.=(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度某網(wǎng)絡(luò)安全培訓(xùn)與咨詢服務(wù)合同2篇
- 2025年加盟商店鋪員工晉升方案協(xié)議
- 2025年股權(quán)投資合作協(xié)議修訂范本2篇
- 2025年代理業(yè)務(wù)合同書范本
- 2025年變電站規(guī)劃設(shè)計合同
- 2025年度高新技術(shù)企業(yè)授權(quán)協(xié)議書范文3篇
- 2025年消防工程設(shè)計與咨詢合同協(xié)議書3篇
- 二零二五年科技產(chǎn)品廣告合作合同書
- 二零二五版綠色施工規(guī)范下建筑垃圾清運(yùn)及處理協(xié)議3篇
- 2025年度城市道路路燈廣告資源整合利用合同4篇
- 臺資企業(yè)A股上市相關(guān)資料
- 電 梯 工 程 預(yù) 算 書
- 羅盤超高清圖
- 參會嘉賓簽到表
- 機(jī)械車間員工績效考核表
- 形式發(fā)票格式2 INVOICE
- 2.48低危胸痛患者后繼治療評估流程圖
- 人力資源管理之績效考核 一、什么是績效 所謂績效簡單的講就是對
- 山東省醫(yī)院目錄
- 云南地方本科高校部分基礎(chǔ)研究
- 廢品管理流程圖
評論
0/150
提交評論