2022-2023學年山西省晉中市榆社縣高考數學考前最后一卷預測卷含解析_第1頁
2022-2023學年山西省晉中市榆社縣高考數學考前最后一卷預測卷含解析_第2頁
2022-2023學年山西省晉中市榆社縣高考數學考前最后一卷預測卷含解析_第3頁
2022-2023學年山西省晉中市榆社縣高考數學考前最后一卷預測卷含解析_第4頁
2022-2023學年山西省晉中市榆社縣高考數學考前最后一卷預測卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對于函數,若滿足,則稱為函數的一對“線性對稱點”.若實數與和與為函數的兩對“線性對稱點”,則的最大值為()A. B. C. D.2.設分別為的三邊的中點,則()A. B. C. D.3.函數的圖象大致為()A. B.C. D.4.已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:根據該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元5.已知實數滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]6.已知函數,其圖象關于直線對稱,為了得到函數的圖象,只需將函數的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變7.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數為()A.1 B.2C.3 D.48.已知數列滿足,(),則數列的通項公式()A. B. C. D.9.命題:的否定為A. B.C. D.10.已知是第二象限的角,,則()A. B. C. D.11.公元263年左右,我國數學家劉徽發(fā)現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為()(參考數據:)A.48 B.36 C.24 D.1212.函數的定義域為()A.或 B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.14.在《九章算術》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,內切球半徑為,則__________.15.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.16.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結果為的式子的序號是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.18.(12分)已知奇函數的定義域為,且當時,.(1)求函數的解析式;(2)記函數,若函數有3個零點,求實數的取值范圍.19.(12分)在世界讀書日期間,某地區(qū)調查組對居民閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農村居民60人.在這些居民中,經常閱讀的城鎮(zhèn)居民有100人,農村居民有30人.(1)填寫下面列聯表,并判斷能否有99%的把握認為經常閱讀與居民居住地有關?城鎮(zhèn)居民農村居民合計經常閱讀10030不經常閱讀合計200(2)從該地區(qū)城鎮(zhèn)居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經常閱讀的人數為,若用樣本的頻率作為概率,求隨機變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)過點作傾斜角為的直線與曲線(為參數)相交于M、N兩點.(1)寫出曲線C的一般方程;(2)求的最小值.21.(12分)如圖,已知拋物線:與圓:()相交于,,,四個點,(1)求的取值范圍;(2)設四邊形的面積為,當最大時,求直線與直線的交點的坐標.22.(10分)如圖,在矩形中,,,點是邊上一點,且,點是的中點,將沿著折起,使點運動到點處,且滿足.(1)證明:平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據已知有,可得,只需求出的最小值,根據,利用基本不等式,得到的最小值,即可得出結論.【詳解】依題意知,與為函數的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數函數的運算和圖像性質、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.2、B【解析】

根據題意,畫出幾何圖形,根據向量加法的線性運算即可求解.【詳解】根據題意,可得幾何關系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎題.3、A【解析】

確定函數在定義域內的單調性,計算時的函數值可排除三個選項.【詳解】時,函數為減函數,排除B,時,函數也是減函數,排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數解析式選擇函數圖象,可通過解析式研究函數的性質,如奇偶性、單調性、對稱性等等排除,可通過特殊的函數值,函數值的正負,函數值的變化趨勢排除,最后剩下的一個即為正確選項.4、D【解析】

用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.5、B【解析】

作出可行域,表示可行域內點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點睛】本題考查簡單的非線性規(guī)劃.解題關鍵是理解非線性目標函數的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結論.6、D【解析】

由函數的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數的圖象關于直線對稱,得,即,解得,所以,,故只需將函數的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【點睛】本題考查三角函數的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題7、D【解析】可以是共4個,選D.8、A【解析】

利用數列的遞推關系式,通過累加法求解即可.【詳解】數列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數列的遞推關系式的應用,數列累加法以及通項公式的求法,考查計算能力.9、C【解析】

命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結論否定,可知命題的否定為,故選C.10、D【解析】

利用誘導公式和同角三角函數的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導公式、同角三角函數的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.11、C【解析】

由開始,按照框圖,依次求出s,進行判斷?!驹斀狻?,故選C.【點睛】框圖問題,依據框圖結構,依次準確求出數值,進行判斷,是解題關鍵。12、A【解析】

根據偶次根式被開方數非負可得出關于的不等式,即可解得函數的定義域.【詳解】由題意可得,解得或.因此,函數的定義域為或.故選:A.【點睛】本題考查具體函數定義域的求解,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由正弦定理,三角函數恒等變換的應用化簡已知等式,結合范圍可求的值,利用正弦定理可求的值,進而根據余弦定理,基本不等式可求的最大值,進而根據三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當且僅當時取等號),即最大值為4,面積的最大值為.故答案為:.【點睛】本題主要考查了正弦定理,三角函數恒等變換的應用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應用,考查了轉化思想,屬于中檔題.14、【解析】

該陽馬補形所得到的長方體的對角線為外接球的直徑,由此能求出,內切球在側面內的正視圖是的內切圓,從而內切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,該陽馬補形所得到的長方體的對角線為外接球的直徑,,,側棱底面,且底面為正方形,內切球在側面內的正視圖是的內切圓,內切球半徑為,故.故答案為.【點睛】本題考查了幾何體外接球和內切球的相關問題,補形法的運用,以及數學文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關鍵是能夠確定球心位置,以及選擇恰當的角度做出截面.球心位置的確定的方法有很多,主要有兩種:(1)補形法(構造法),通過補形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.15、【解析】試題分析:根據題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率16、①②③【解析】

由已知分別結合和差角的正切及正弦余弦公式進行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應用,屬于中檔試題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)過點作交于,連接,設,連接,由角平分線的性質,正方形的性質,三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識和線面的關系可證得平面,建立空間直角坐標系,求得兩個平面的法向量,根據二面角的向量計算公式可求得其值.【詳解】(1)如圖,過點作交于,連接,設,連接,,,又為的角平分線,四邊形為正方形,,又,,,,,又為的中點,又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,,平面,平面,故建立如圖空間直角坐標系,則,,,,,,,設平面的一個法向量為,則,,令,得,設平面的一個法向量為,則,,令,得,由圖示可知二面角是銳角,故二面角的余弦值為.【點睛】本題考查空間的面面垂直關系的證明,二面角的計算,在證明垂直關系時,注意運用平面幾何中的等腰三角形的“三線合一”,勾股定理、菱形的對角線互相垂直,屬于基礎題.18、(1);(2)【解析】

(1)根據奇函數定義,可知;令則,結合奇函數定義即可求得時的解析式,進而得函數的解析式;(2)根據零點定義,可得,由函數圖像分析可知曲線與直線在第三象限必1個交點,因而需在第一象限有2個交點,將與聯立,由判別式及兩根之和大于0,即可求得的取值范圍.【詳解】(1)因為函數為奇函數,且,故;當時,,,則;故.(2)令,解得,畫出函數關系如下圖所示,要使曲線與直線有3個交點,則2個交點在第一象限,1個交點在第三象限,聯立,化簡可得,令,即,解得,所以實數的取值范圍為.【點睛】本題考查了根據函數奇偶性求解析式,分段函數圖像畫法,由函數零點個數求參數的取值范圍應用,數形結合的應用,屬于中檔題.19、(1)見解析,有99%的把握認為經常閱讀與居民居住地有關.(2)【解析】

(1)根據題意填寫列聯表,利用公式求出,比較與6.635的大小得結論;(2)由樣本數據可得經常閱讀的人的概率是,則,根據二項分布的期望公式計算可得;【詳解】解:(1)由題意可得:城鎮(zhèn)居民農村居民合計經常閱讀10030130不經常閱讀403070合計14060200則,所以有99%的把握認為經常閱讀與居民居住地有關.(2)根據樣本估計,從該地區(qū)城鎮(zhèn)居民中隨機抽取1人,抽到經常閱讀的人的概率是,且,所以隨機變量的期望為.【點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的數學期望的計算,考查運算求解能力,屬于基礎題.20、(1);(2).【解析】

(1)將曲線的參數方程消參得到普通方程;(2)寫出直線MN的參數方程,將參數方程代入曲線方程,并將其化為一個關于的一元二次方程,根據,結合韋達定理和余弦函數的性質,即可求出的最小值.【詳解】(1)由曲線C的參數方程(是參數),可得,即曲線C的一般方程為.(2)直線MN的參數方程為(t為參數),將直線MN的參數方程代入曲線,得,整理得,設M,N對應的對數分別為,,則,當時,取得最小值為.【點睛】該題考查的是有關參數方程的問題,涉及到的知識點有參數方程向普通方程的轉化,直線的參數方程的應用,屬于簡單題目.21、(1)(2)點的坐標為【解析】

將拋物線方程與圓方程聯立,消去得到關于的一元二次方程,拋物線與圓有四個交點需滿足關于的一元二次方程在上有兩個不等的實數根,根據二次函數的有關性質即可得到關于的不等式組,解不等式即可.不妨設拋物線與圓的四個交點坐標為,,,,據此可表示出直線、的方程,聯立方程即可表示出點坐標,再根據等腰梯形的面積公式可得四邊形的面積的表達式,令,由及知,對關于的面積函數進行求導,判斷其單調性和最值,即可求出四邊形的面積取得最大值時的值,進而求出點坐標.【詳解】(1)聯立拋物線與圓的方程消去,得.由題意可知在上有兩個不等的實數根.所以解得,所以的取值范圍為.(2)根據(1)可設方程的兩個根分別為,(),則,,,,且,,所以直線、的方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論