2023屆【蘇科版】江蘇省鹽城市鞍湖學(xué)校中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
2023屆【蘇科版】江蘇省鹽城市鞍湖學(xué)校中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
2023屆【蘇科版】江蘇省鹽城市鞍湖學(xué)校中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
2023屆【蘇科版】江蘇省鹽城市鞍湖學(xué)校中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
2023屆【蘇科版】江蘇省鹽城市鞍湖學(xué)校中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是由5個相同的小正方體組成的立體圖形,這個立體圖形的俯視圖是()A. B. C. D.2.下列各數(shù)中,比﹣1大1的是()A.0B.1C.2D.﹣33.如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長為()A. B. C. D.4.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=35.濕地旅游愛好者小明了解到鄂東南市水資源總量為42.4億立方米,其中42.4億用科學(xué)記數(shù)法可表示為()A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×1086.對于數(shù)據(jù):6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是6 B.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是7C.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是6 D.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是77.某幾何體由若干個大小相同的小正方體搭成,其主視圖與左視圖如圖所示,則搭成這個幾何體的小正方體最少有()A.4個 B.5個 C.6個 D.7個8.一個多邊形的內(nèi)角和比它的外角和的倍少180°,那么這個多邊形的邊數(shù)是()A.7 B.8 C.9 D.109.矩形具有而平行四邊形不具有的性質(zhì)是()A.對角相等 B.對角線互相平分C.對角線相等 D.對邊相等10.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM和BC的長分別為()A.2,π3 B.23,π C.3,2π3 D.2311.下列運(yùn)算正確的是()A.a(chǎn)4+a2=a4 B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2 D.b6÷b2=b312.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點(diǎn)F,則線段DF的長為()A.7 B.8 C.9 D.10二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖1,點(diǎn)P從扇形AOB的O點(diǎn)出發(fā),沿O→A→B→0以1cm/s的速度勻速運(yùn)動,圖2是點(diǎn)P運(yùn)動時,線段OP的長度y隨時間x變化的關(guān)系圖象,則扇形AOB中弦AB的長度為______cm.14.如圖,在每個小正方形邊長為的網(wǎng)格中,的頂點(diǎn),,均在格點(diǎn)上,為邊上的一點(diǎn).線段的值為______________;在如圖所示的網(wǎng)格中,是的角平分線,在上求一點(diǎn),使的值最小,請用無刻度的直尺,畫出和點(diǎn),并簡要說明和點(diǎn)的位置是如何找到的(不要求證明)___________.15.如圖,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分線MN交AC于點(diǎn)D,則∠DBC的度數(shù)是____________.16.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.17.若代數(shù)式有意義,則實數(shù)x的取值范圍是____.18.在函數(shù)y=x-4中,自變量x的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)經(jīng)過江漢平原的滬蓉(上海﹣成都)高速鐵路即將動工.工程需要測量漢江某一段的寬度.如圖①,一測量員在江岸邊的A處測得對岸岸邊的一根標(biāo)桿B在它的正北方向,測量員從A點(diǎn)開始沿岸邊向正東方向前進(jìn)100米到達(dá)點(diǎn)C處,測得∠ACB=68°.(1)求所測之處江的寬度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的測量方案外,請你再設(shè)計一種測量江寬的方案,并在圖②中畫出圖形.(不用考慮計算問題,敘述清楚即可)20.(6分)如圖,AB是⊙O的直徑,點(diǎn)E是上的一點(diǎn),∠DBC=∠BED.(1)求證:BC是⊙O的切線;(2)已知AD=3,CD=2,求BC的長.21.(6分)已知:a是﹣2的相反數(shù),b是﹣2的倒數(shù),則(1)a=_____,b=_____;(2)求代數(shù)式a2b+ab的值.22.(8分)如圖1,經(jīng)過原點(diǎn)O的拋物線y=ax2+bx(a≠0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).(1)求這條拋物線的表達(dá)式;(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);(3)如圖2,若點(diǎn)M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.23.(8分)如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2:(<0)的頂點(diǎn).(1)求A、B兩點(diǎn)的坐標(biāo);(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當(dāng)△BDM為直角三角形時,求的值.24.(10分)如圖,在等腰△ABC中,AB=BC,以AB為直徑的⊙O與AC相交于點(diǎn)D,過點(diǎn)D作DE⊥BC交AB延長線于點(diǎn)E,垂足為點(diǎn)F.(1)證明:DE是⊙O的切線;(2)若BE=4,∠E=30°,求由、線段BE和線段DE所圍成圖形(陰影部分)的面積,(3)若⊙O的半徑r=5,sinA=,求線段EF的長.25.(10分)為給鄧小平誕辰周年獻(xiàn)禮,廣安市政府對城市建設(shè)進(jìn)行了整改,如圖所示,已知斜坡長60米,坡角(即)為,,現(xiàn)計劃在斜坡中點(diǎn)處挖去部分斜坡,修建一個平行于水平線的休閑平臺和一條新的斜坡(下面兩個小題結(jié)果都保留根號).若修建的斜坡BE的坡比為:1,求休閑平臺的長是多少米?一座建筑物距離點(diǎn)米遠(yuǎn)(即米),小亮在點(diǎn)測得建筑物頂部的仰角(即)為.點(diǎn)、、、,在同一個平面內(nèi),點(diǎn)、、在同一條直線上,且,問建筑物高為多少米?26.(12分)在連接A、B兩市的公路之間有一個機(jī)場C,機(jī)場大巴由A市駛向機(jī)場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機(jī)場大巴、貨車到機(jī)場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達(dá)A市所需時間.求機(jī)場大巴到機(jī)場C的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式.求機(jī)場大巴與貨車相遇地到機(jī)場C的路程.27.(12分)黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.(1)求A種,B種樹木每棵各多少元;(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費(fèi)用最省,并求出最省的費(fèi)用.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

從上面看共有2行,上面一行有3個正方形,第二行中間有一個正方形,故選C.2、A【解析】

用-1加上1,求出比-1大1的是多少即可.【詳解】∵-1+1=1,∴比-1大1的是1.故選:A.【點(diǎn)睛】本題考查了有理數(shù)加法的運(yùn)算,解題的關(guān)鍵是要熟練掌握:“先符號,后絕對值”.3、A【解析】

過E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依據(jù)△ABC∽△GEF,即可得到EG:EF:GF,根據(jù)斜邊的長列方程即可得到結(jié)論.【詳解】過E作EG∥BC,交AC于G,則∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,設(shè)EG=4k=AG,則EF=3k=CF,F(xiàn)G=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故選A.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),等腰三角形的性質(zhì)以及勾股定理的綜合運(yùn)用,解決問題的關(guān)鍵是作輔助線構(gòu)相似三角形以及構(gòu)造等腰三角形.4、C【解析】

試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點(diǎn):分式有意義的條件.5、C【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點(diǎn)移動了多少位,的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,是正數(shù);當(dāng)原數(shù)的絕對值<1時,是負(fù)數(shù).【詳解】42.4億=4240000000,用科學(xué)記數(shù)法表示為:4.24×1.故選C.【點(diǎn)睛】考查科學(xué)記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關(guān)鍵.6、C【解析】

根據(jù)題目中的數(shù)據(jù)可以按照從小到大的順序排列,從而可以求得這組數(shù)據(jù)的平均數(shù)和中位數(shù).【詳解】對于數(shù)據(jù):6,3,4,7,6,0,1,這組數(shù)據(jù)按照從小到大排列是:0,3,4,6,6,7,1,這組數(shù)據(jù)的平均數(shù)是:中位數(shù)是6,故選C.【點(diǎn)睛】本題考查了平均數(shù)、中位數(shù)的求法,解決本題的關(guān)鍵是明確它們的意義才會計算,求平均數(shù)是用一組數(shù)據(jù)的和除以這組數(shù)據(jù)的個數(shù);中位數(shù)的求法分兩種情況:把一組數(shù)據(jù)從小到大排成一列,正中間如果是一個數(shù),這個數(shù)就是中位數(shù),如果正中間是兩個數(shù),那中位數(shù)是這兩個數(shù)的平均數(shù).7、B【解析】

由主視圖和左視圖確定俯視圖的形狀,再判斷最少的正方體的個數(shù).【詳解】由主視圖和左視圖可確定所需正方體個數(shù)最少時俯視圖(數(shù)字為該位置小正方體的個數(shù))為:則搭成這個幾何體的小正方體最少有5個,故選B.【點(diǎn)睛】本題考查了由三視圖判斷幾何體,根據(jù)主視圖和左視圖畫出所需正方體個數(shù)最少的俯視圖是關(guān)鍵.【詳解】請在此輸入詳解!【點(diǎn)睛】請在此輸入點(diǎn)睛!8、A【解析】

設(shè)這個正多邊形的邊數(shù)是n,就得到方程,從而求出邊數(shù),即可求出答案.【詳解】設(shè)這個多邊形的邊數(shù)為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點(diǎn)睛】本題主要考查多邊形內(nèi)角與外角的知識點(diǎn),此題要結(jié)合多邊形的內(nèi)角和與外角和,根據(jù)題目中的等量關(guān)系,構(gòu)建方程求解即可.9、C【解析】試題分析:舉出矩形和平行四邊形的所有性質(zhì),找出矩形具有而平行四邊形不具有的性質(zhì)即可.解:矩形的性質(zhì)有:①矩形的對邊相等且平行,②矩形的對角相等,且都是直角,③矩形的對角線互相平分、相等;平行四邊形的性質(zhì)有:①平行四邊形的對邊分別相等且平行,②平行四邊形的對角分別相等,③平行四邊形的對角線互相平分;∴矩形具有而平行四邊形不一定具有的性質(zhì)是對角線相等,故選C.10、D【解析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點(diǎn):1正多邊形和圓;2.弧長的計算.11、B【解析】分析:根據(jù)合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質(zhì),逐一計算判斷即可.詳解:根據(jù)同類項的定義,可知a4與a2不是同類項,不能計算,故不正確;根據(jù)積的乘方,等于個個因式分別乘方,可得(x2y)3=x6y3,故正確;根據(jù)完全平方公式,可得(m-n)2=m2-2mn+n2,故不正確;根據(jù)同底數(shù)冪的除法,可知b6÷b2=b4,不正確.故選B.點(diǎn)睛:此題主要考查了合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質(zhì),熟記并靈活運(yùn)用是解題關(guān)鍵.12、B【解析】

根據(jù)三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問題.【詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

由圖2可以計算出OB的長度,然后利用OB=OA可以計算出通過弦AB的長度.【詳解】由圖2得通過OB所用的時間為s,則OB的長度為1×2=2cm,則通過弧AB的時間為s,則弧長AB為,利用弧長公式,得出∠AOB=120°,即可以算出AB為.【點(diǎn)睛】本題主要考查了從圖中提取信息的能力和弧長公式的運(yùn)用及轉(zhuǎn)換,熟練運(yùn)用公式是本題的解題關(guān)鍵.14、(Ⅰ)(Ⅱ)如圖,取格點(diǎn)、,連接與交于點(diǎn),連接與交于點(diǎn).【解析】

(Ⅰ)根據(jù)勾股定理進(jìn)行計算即可.(Ⅱ)根據(jù)菱形的每一條對角線平分每一組對角,構(gòu)造邊長為1的菱形ABEC,連接AE交BC于M,即可得出是的角平分線,再取點(diǎn)F使AF=1,則根據(jù)等腰三角形的性質(zhì)得出點(diǎn)C與F關(guān)于AM對稱,連接DF交AM于點(diǎn)P,此時的值最小.【詳解】(Ⅰ)根據(jù)勾股定理得AC=;故答案為:1.(Ⅱ)如圖,如圖,取格點(diǎn)、,連接與交于點(diǎn),連接與交于點(diǎn),則點(diǎn)P即為所求.說明:構(gòu)造邊長為1的菱形ABEC,連接AE交BC于M,則AM即為所求的的角平分線,在AB上取點(diǎn)F,使AF=AC=1,則AM垂直平分CF,點(diǎn)C與F關(guān)于AM對稱,連接DF交AM于點(diǎn)P,則點(diǎn)P即為所求.【點(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計,涉及勾股定理、菱形的判定和性質(zhì)、幾何變換軸對稱—最短距離等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會利用數(shù)形結(jié)合的思想解決問題.15、15°【解析】分析:根據(jù)等腰三角形的性質(zhì)得出∠ABC的度數(shù),根據(jù)中垂線的性質(zhì)得出∠ABD的度數(shù),最后求出∠DBC的度數(shù).詳解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵M(jìn)N為AB的中垂線,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.點(diǎn)睛:本題主要考查的是等腰三角形的性質(zhì)以及中垂線的性質(zhì)定理,屬于中等難度的題型.理解中垂線的性質(zhì)是解決這個問題的關(guān)鍵.416、2.【解析】

由tan∠CBD==設(shè)CD=3a、BC=4a,據(jù)此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【詳解】解:在Rt△BCD中,∵tan∠CBD==,

∴設(shè)CD=3a、BC=4a,

則BD=AD=5a,

∴AC=AD+CD=5a+3a=8a,

在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,

解得:a=或a=-(舍),

則BD=5a=2,

故答案為2.【點(diǎn)睛】本題考查線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),勾股定理的應(yīng)用,解題關(guān)鍵是熟記性質(zhì)與定理并準(zhǔn)確識圖.17、x≠﹣5.【解析】

根據(jù)分母不為零分式有意義,可得答案.【詳解】由題意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【點(diǎn)睛】本題考查了分式有意義的條件,利用分母不為零分式有意義得出不等式是解題關(guān)鍵.18、x≥4【解析】試題分析:二次根式有意義的條件:二次根號下的數(shù)為非負(fù)數(shù),二次根式才有意義.由題意得,.考點(diǎn):二次根式有意義的條件點(diǎn)評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握二次根式有意義的條件,即可完成.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)21米(2)見解析【解析】試題分析:(1)根據(jù)題意易發(fā)現(xiàn),直角三角形ABC中,已知AC的長度,又知道了∠ACB的度數(shù),那么AB的長就不難求出了.(2)從所畫出的圖形中可以看出是利用三角形全等、三角形相似、解直角三角形的知識來解決問題的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC?tan68°≈100×2.1=21(米)答:所測之處江的寬度約為21米.(2)①延長BA至C,測得AC做記錄;②從C沿平行于河岸的方向走到D,測得CD,做記錄;③測AE,做記錄.根據(jù)△BAE∽△BCD,得到比例線段,從而解答20、(1)證明見解析(2)BC=【解析】

(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點(diǎn):1.切線的判定;2.相似三角形的判定和性質(zhì).21、2﹣【解析】試題分析:利用相反數(shù)和倒數(shù)的定義即可得出.先因式分解,再代入求出即可.試題解析:是的相反數(shù),是的倒數(shù),當(dāng)時,點(diǎn)睛:只有符號不同的兩個數(shù)互為相反數(shù).乘積為的兩個數(shù)互為倒數(shù).22、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】

(1)由直線解析式可求得B點(diǎn)坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達(dá)式;(2)過C作CD∥y軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過B作BF⊥CD于點(diǎn)F,可設(shè)出C點(diǎn)坐標(biāo),利用C點(diǎn)坐標(biāo)可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關(guān)于C點(diǎn)坐標(biāo)的方程,可求得C點(diǎn)坐標(biāo);(3)設(shè)MB交y軸于點(diǎn)N,則可證得△ABO≌△NBO,可求得N點(diǎn)坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點(diǎn)坐標(biāo),過M作MG⊥y軸于點(diǎn)G,由B、C的坐標(biāo)可求得OB和OC的長,由相似三角形的性質(zhì)可求得的值,當(dāng)點(diǎn)P在第一象限內(nèi)時,過P作PH⊥x軸于點(diǎn)H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點(diǎn)坐標(biāo);當(dāng)P點(diǎn)在第三象限時,同理可求得P點(diǎn)坐標(biāo).【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點(diǎn)坐標(biāo)代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過B作BF⊥CD于點(diǎn)F,∵點(diǎn)C是拋物線上第四象限的點(diǎn),∴可設(shè)C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設(shè)MB交y軸于點(diǎn)N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設(shè)直線BN解析式為y=kx+,把B點(diǎn)坐標(biāo)代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當(dāng)點(diǎn)P在第一象限時,如圖3,過M作MG⊥y軸于點(diǎn)G,過P作PH⊥x軸于點(diǎn)H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(jìn)(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當(dāng)點(diǎn)P在第三象限時,如圖4,過M作MG⊥y軸于點(diǎn)G,過P作PH⊥y軸于點(diǎn)H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點(diǎn)P,其坐標(biāo)為(,)或(﹣,).【點(diǎn)睛】本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、方程思想及分類討論思想等知識.在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中用C點(diǎn)坐標(biāo)表示出△BOC的面積是解題的關(guān)鍵,在(3)中確定出點(diǎn)P的位置,構(gòu)造相似三角形是解題的關(guān)鍵,注意分兩種情況.23、(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為(3)或時,△BDM為直角三角形.【解析】

(1)在中令y=0,即可得到A、B兩點(diǎn)的坐標(biāo).(2)先用待定系數(shù)法得到拋物線C1的解析式,由S△PBC=S△POC+S△BOP–S△BOC得到△PBC面積的表達(dá)式,根據(jù)二次函數(shù)最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90°時;②∠BDM=90°時,討論即可求得m的值.【詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設(shè)拋物線C1的表達(dá)式為(),把C(0,)代入可得,.∴C1的表達(dá)式為:,即.設(shè)P(p,),∴S△PBC=S△POC+S△BOP–S△BOC=.∵<0,∴當(dāng)時,S△PBC最大值為.(3)由C2可知:B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD<90°,∴討論∠BMD=90°和∠BDM=90°兩種情況:當(dāng)∠BMD=90°時,BM2+DM2=BD2,即+=,解得:,(舍去).當(dāng)∠BDM=90°時,BD2+DM2=BM2,即+=,解得:,(舍去).綜上所述,或時,△BDM為直角三角形.24、(1)見解析(2)8(3)【解析】分析:(1)連接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根據(jù)AO=OB知OD是△ABC的中位線,據(jù)此知OD∥BC,結(jié)合DE⊥BC即可得證;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根據(jù)S陰影=S△ODE-S扇形ODB計算可得答案.(3)先證Rt△DFB∽Rt△DCB得,據(jù)此求得BF的長,再證△EFB∽△EDO得,據(jù)此求得EB的長,繼而由勾股定理可得答案.詳解:(1)如圖,連接BD、OD,∵AB是⊙O的直徑,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切線;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴,解得:x=4,∴DE=4,S△ODE=×4×4=8,S扇形ODB=,則S陰影=S△ODE-S扇形ODB=8-;(3)在Rt△ABD中,BD=ABsinA=10×=2,∵DE⊥BC,∴Rt△DFB∽Rt△DCB,∴,即,∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴,即,∴EB=,∴EF=.點(diǎn)睛:本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握圓的有關(guān)性質(zhì)、中位線定理、三角函數(shù)的應(yīng)用及相似三角形的判定與性質(zhì)等知識點(diǎn).25、(1)m(2)米【解析】分析:(1)由三角函數(shù)的定義,即可求得AM與AF的長,又由坡度的定義,即可求得NF的長,繼而求得平臺MN的長;(2)在RT△BMK中,求得BK=MK=50米,從而求得EM=84米;在RT△HEM中,求得,繼而求得米.詳解:(1)∵M(jìn)F∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB長米,M是AB的中點(diǎn),∴AM=(米),∴AF=MF=AM?cos∠AMF=(米),在中,∵斜坡AN的坡比為∶1,∴,∴,∴MN=MF-NF=50-=.(2)在RT△BMK中,BM=,∴BK=MK=50(米),

EM=BG+BK=34+50=84(米)在RT△HEM中,∠HME=30°,∴,∴,∴(米)答:休閑平臺DE的長是米;建筑物GH高為米.點(diǎn)睛:本題考查了坡度坡角的問題以及俯角仰角的問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論