




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第《勾股定理》說(shuō)課稿《勾股定理》說(shuō)課稿1
一、教材分析
(一)教材地位:這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。
(二)教學(xué)目標(biāo):
知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題.
過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.
情感態(tài)度與價(jià)值觀(guān):激發(fā)學(xué)生愛(ài)國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿(mǎn)探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).
(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.
二、教法與學(xué)法分析:
學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀(guān)察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).
教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋?xiě)?yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀(guān)察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。
學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.
三、教學(xué)過(guò)程設(shè)計(jì)
1.創(chuàng)設(shè)情境,提出問(wèn)題
2.實(shí)驗(yàn)操作,模型構(gòu)建
3.回歸生活,應(yīng)用新知
4.知識(shí)拓展,鞏固深化
5.感悟收獲,布置作業(yè)
(一)創(chuàng)設(shè)情境提出問(wèn)題
(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹(shù)20__年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票大會(huì)會(huì)標(biāo)
設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.
(2)某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?
設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié).
二、實(shí)驗(yàn)操作模型構(gòu)建
1.等腰直角三角形(數(shù)格子)2.一般直角三角形(割補(bǔ))
問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?
設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.
問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)
設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高.
通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理.
設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律.
三.回歸生活應(yīng)用新知
讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心.
四、知識(shí)拓展鞏固深化
基礎(chǔ)題,情境題,探索題.
設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.
基礎(chǔ)題:直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為_(kāi),你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?
設(shè)計(jì)意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.
情境題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?
設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。
探索題:做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。
設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.
五、感悟收獲布置作業(yè):
這節(jié)課你的收獲是什么?
作業(yè):
1、課本習(xí)題2.1
2、搜集有關(guān)勾股定理證明的資料.
板書(shū)設(shè)計(jì)探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
設(shè)計(jì)說(shuō)明:
1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.
2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平.《勾股定理》說(shuō)課稿2各位專(zhuān)家領(lǐng)導(dǎo):
上午好!今天我說(shuō)課的課題是《勾股定理》。
一、教材分析:
(一)本節(jié)內(nèi)容在全書(shū)和章節(jié)的地位。
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(華東版),八年級(jí)第十九章第二節(jié)“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實(shí)際生活中用途很大。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和觀(guān)察分析問(wèn)題的能力;通過(guò)實(shí)際分析,拼圖等活動(dòng),使學(xué)生獲得較為直觀(guān)的印象;通過(guò)聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運(yùn)用。
(二)三維教學(xué)目標(biāo):
1、知識(shí)與能力目標(biāo)。
(1)理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運(yùn)用勾股定理及其計(jì)算;
(2)通過(guò)觀(guān)察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
2、過(guò)程與方法目標(biāo)。
在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀(guān)察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和從特殊到一般的思想方法。
3、情感態(tài)度與價(jià)值觀(guān)。
通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)和熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。
(三)教學(xué)重點(diǎn)、難點(diǎn):
1、教學(xué)重點(diǎn):勾股定理的證明與運(yùn)用
2、教學(xué)難點(diǎn):用面積法等方法證明勾股定理
3、難點(diǎn)成因:
對(duì)于勾股定理的得出,首先需要學(xué)生通過(guò)動(dòng)手操作,在觀(guān)察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運(yùn)用數(shù)學(xué)的思想意識(shí),但學(xué)生在這一方面的可預(yù)見(jiàn)性和耐挫折能力并不是很成熟,從而形成困難。
4、突破措施:
(1)創(chuàng)設(shè)情景,激發(fā)思維:
創(chuàng)設(shè)生動(dòng)、啟發(fā)性的問(wèn)題情景,激發(fā)學(xué)生的問(wèn)題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習(xí)過(guò)程;
(2)自主探索,敢于猜想:
充分讓自己動(dòng)手操作,大膽猜想數(shù)學(xué)問(wèn)題的結(jié)論,老師是整個(gè)活動(dòng)的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動(dòng)的課堂環(huán)境;
(3)張揚(yáng)個(gè)性,展示風(fēng)采:
實(shí)行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書(shū)記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報(bào)本小組的討論結(jié)果,并可上臺(tái)利用“多媒體視頻展示臺(tái)”展示本組的優(yōu)秀作品,其他小組給予評(píng)價(jià)。這樣既保證討論的有效性,也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性。
二、教法與學(xué)法分析:
1、教法分析:
數(shù)學(xué)是一門(mén)培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對(duì)初二年級(jí)學(xué)生的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神?;镜慕虒W(xué)程序是“創(chuàng)設(shè)情景-動(dòng)手操作-歸納驗(yàn)證-問(wèn)題解決-課堂小結(jié)-布置作業(yè)”六個(gè)方面。
2、學(xué)法分析:
新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對(duì)性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動(dòng)中,鼓勵(lì)學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。
三、教學(xué)過(guò)程設(shè)計(jì):
(一)創(chuàng)設(shè)情景:
多媒體課件演示FLASH小動(dòng)畫(huà)片:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?
問(wèn)題的設(shè)計(jì)有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,求第三邊?”的問(wèn)題。學(xué)生會(huì)感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。這種以實(shí)際問(wèn)題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來(lái)源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。
(二)動(dòng)手操作:
1、課件出示課本P99圖19.2.1:
觀(guān)察圖中用陰影畫(huà)出的三個(gè)正方形,你從中能夠得出什么結(jié)論?
學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過(guò)正方形的面積之間的關(guān)系發(fā)現(xiàn):對(duì)于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。
2、緊接著讓學(xué)生思考:
上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫(huà)出圖形,再剪一剪、拼一拼,通過(guò)小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過(guò)學(xué)生的動(dòng)手操作、合作交流,來(lái)獲取知識(shí),這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會(huì)到觀(guān)察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過(guò)程,提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力。
3、再問(wèn):
當(dāng)邊長(zhǎng)不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個(gè)邊長(zhǎng)分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計(jì)算。這樣設(shè)計(jì)的目的是讓學(xué)生體會(huì)到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。
(三)歸納驗(yàn)證:
1、歸納:
通過(guò)動(dòng)手操作、合作交流,探索邊長(zhǎng)為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長(zhǎng)為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習(xí)過(guò)程中感受學(xué)數(shù)學(xué)的樂(lè)趣,,使學(xué)生學(xué)會(huì)“文字語(yǔ)言”與“數(shù)學(xué)語(yǔ)言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識(shí),解決問(wèn)題。
2、驗(yàn)證:
先后三次驗(yàn)證“勾股定理”這一結(jié)論,期間學(xué)生動(dòng)手進(jìn)行了畫(huà)圖、剪圖、拼圖,還有測(cè)量、計(jì)算等活動(dòng),使學(xué)生從中體會(huì)到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過(guò)程也有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。
(四)問(wèn)題解決:
1、讓學(xué)生解決開(kāi)始上課前所提出的問(wèn)題,前后呼應(yīng),讓學(xué)生體會(huì)到成功的快樂(lè)。
2、自學(xué)課本P101例1,然后完成P102練習(xí)。
(五)課堂小結(jié):
1、小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識(shí)的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報(bào),小組間要互相比一比,看看哪一個(gè)小組表現(xiàn)最佳。
2、教師用多媒體介紹“勾股定理史話(huà)”。
(1)《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。
(2)康熙數(shù)學(xué)專(zhuān)著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。
3、目的:對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激勵(lì)學(xué)生奮發(fā)向上。
(六)布置作業(yè):
課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。
以上內(nèi)容,我僅從“說(shuō)教材”,“說(shuō)學(xué)情”、“說(shuō)教法”、“說(shuō)學(xué)法”、“說(shuō)教學(xué)過(guò)程”上來(lái)說(shuō)明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專(zhuān)家領(lǐng)導(dǎo)對(duì)本次說(shuō)課提出寶貴的意見(jiàn),謝謝!《勾股定理》說(shuō)課稿3
本節(jié)課設(shè)計(jì)力求讓學(xué)生參與知識(shí)的發(fā)現(xiàn)過(guò)程,體現(xiàn)以學(xué)生為主體,以促進(jìn)學(xué)生發(fā)展為本的教學(xué)理念,變知識(shí)的傳授者為學(xué)生自主探求知識(shí)的引導(dǎo)者、指導(dǎo)者、合作者。并利用多媒體,直觀(guān)教具演示,營(yíng)造一個(gè)聲像同步,能動(dòng)能靜的教學(xué)情境,給學(xué)生提供一個(gè)探索的空間,促使學(xué)生主動(dòng)參與,親身體驗(yàn)勾股定理的探索證明過(guò)程,從而鍛煉思維、激發(fā)創(chuàng)造,優(yōu)化課堂教學(xué)。努力做到有傳統(tǒng)的教學(xué)課堂像實(shí)驗(yàn)課堂轉(zhuǎn)變,使學(xué)生真正成為學(xué)習(xí)的主人,培養(yǎng)了學(xué)生的素質(zhì)能力,達(dá)到了良好的教學(xué)效果。
(一)創(chuàng)設(shè)情境,引入新課
課前首先讓學(xué)生閱讀趙爽的弦圖相關(guān)知識(shí)讓他們體會(huì)中國(guó)古代科學(xué)的發(fā)達(dá)。在課堂上緊密結(jié)合前面已學(xué)的知識(shí)進(jìn)行導(dǎo)入。如提出問(wèn)題:你見(jiàn)過(guò)這個(gè)圖案嗎?你聽(tīng)說(shuō)過(guò)勾股定理嗎?你還記得三角形的三邊遵循什么規(guī)律嗎?等等一系列的問(wèn)題激起學(xué)生學(xué)生的熱情和求知欲,然后順利進(jìn)入探究。本節(jié)我們就來(lái)學(xué)習(xí)一下直角三角形的三條邊除具備前面的性質(zhì)外還有什么新的特征。
(二)引導(dǎo)學(xué)生,探究新知
①初步感知定理:這一環(huán)節(jié)我選擇了教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時(shí)發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問(wèn)題,現(xiàn)在請(qǐng)同學(xué)觀(guān)察,看看有什么發(fā)現(xiàn)?(學(xué)案出示)使問(wèn)題更形象、具體。
②提出猜想:在活動(dòng)1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過(guò)活動(dòng)2進(jìn)行看一看、填一填、想一想、議一議、做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),學(xué)生再由淺到深,由特殊到一般的提出問(wèn)題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。
③證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對(duì)一個(gè)一般的直角三角形進(jìn)行證明:通過(guò)活動(dòng)3我充分引導(dǎo)學(xué)生利用直觀(guān)教具,進(jìn)行拼圖實(shí)驗(yàn),在動(dòng)手操中放手讓學(xué)生思考、討論、合作、交流、探究問(wèn)題的多種方法。,并對(duì)學(xué)生的做法給予表?yè)P(yáng),使學(xué)生在學(xué)習(xí)過(guò)程中,感受到自我創(chuàng)造的快樂(lè),從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。
④總結(jié)定理:讓學(xué)生自己總結(jié),不完善之處由教師補(bǔ)充,在前面探究活動(dòng)的基礎(chǔ)上,學(xué)生容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理。
(三)反饋訓(xùn)練,鞏固新知
學(xué)生對(duì)所學(xué)的知識(shí)是否掌握了,達(dá)到了什么程度?為了檢測(cè)學(xué)生對(duì)本課的達(dá)成情況和加強(qiáng)對(duì)學(xué)生能力的培養(yǎng),我設(shè)計(jì)了一組坡有難度的練習(xí)題。
(四)歸納總結(jié),深化新知
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的問(wèn)題是什么?……
通過(guò)小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識(shí)成為體系。
(五)布置作業(yè)。拓展新知
讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流。使本節(jié)知識(shí)得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。
(六)板書(shū)設(shè)計(jì),明確新知《勾股定理》說(shuō)課稿4
課題:“勾股定理”第一課時(shí)
內(nèi)容:教材分析、教學(xué)過(guò)程設(shè)計(jì)、設(shè)計(jì)說(shuō)明
一、教材分析
(一)教材所處的地位
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)八年級(jí)第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。
(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:
1、能說(shuō)出勾股定理的內(nèi)容。
2、會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。
3、在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀(guān)察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。
4、通過(guò)介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。
(三)本課的教學(xué)重點(diǎn):探索勾股定理
本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。
二、教法與學(xué)法分析:
教法分析:針對(duì)初二年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分。
學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問(wèn)題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
三、教學(xué)過(guò)程設(shè)計(jì)
(一)提出問(wèn)題:
首先創(chuàng)設(shè)這樣一個(gè)問(wèn)題情境:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?問(wèn)題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問(wèn)題。學(xué)生會(huì)感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問(wèn)題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來(lái)源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識(shí)的基本觀(guān)點(diǎn),同時(shí)也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,而且解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程。
(二)實(shí)驗(yàn)操作:
1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問(wèn)題,讓學(xué)生計(jì)算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過(guò)直接數(shù)小方格的個(gè)數(shù),還是將C劃分為4個(gè)全等的等腰直角三角形來(lái)求等等,各種方法都應(yīng)予于肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過(guò)正方形面積之間的關(guān)系容易發(fā)現(xiàn)對(duì)于等腰直角三角形而言滿(mǎn)足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。
2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計(jì)算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫(huà)出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會(huì)到觀(guān)察、猜想、歸納的思想,也讓學(xué)生的分析問(wèn)題和解決問(wèn)題的能力在無(wú)形中得到了提高,這對(duì)后面的學(xué)習(xí)及有幫助。
3、給出一個(gè)邊長(zhǎng)為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計(jì)算是否也滿(mǎn)足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會(huì)到結(jié)論更具有一般性。
(三)歸納驗(yàn)證:
1、歸納通過(guò)對(duì)邊長(zhǎng)為整數(shù)的等腰直角三角形到一般直角三角形再到邊長(zhǎng)含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語(yǔ)言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對(duì)于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。
2、驗(yàn)證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過(guò)測(cè)量、計(jì)算來(lái)驗(yàn)證結(jié)論的正確性。這一過(guò)程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示,因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對(duì)勾股定理的研究,對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育。
(四)問(wèn)題解決:
讓學(xué)生解決開(kāi)頭的實(shí)際問(wèn)題,前后呼應(yīng),學(xué)生從中能體會(huì)到成功的喜悅。完成課本“想一想”進(jìn)一步體會(huì)勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。
(五)課堂小結(jié):
主要通過(guò)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。
(六)布置作業(yè):
課本P6習(xí)題1.11,2,3,4一方面鞏固勾股定理,另一方面進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。另外,補(bǔ)充一道開(kāi)放題。
四、設(shè)計(jì)說(shuō)明
1、本節(jié)課是公式課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀(guān)察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般再到更一般的對(duì)直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用,對(duì)學(xué)生的終身發(fā)展也有一定的作用。
3、關(guān)于練習(xí)的設(shè)計(jì),除兩個(gè)實(shí)際問(wèn)題和課本習(xí)題以外,我準(zhǔn)備設(shè)計(jì)一道開(kāi)放題,大致思路是在已畫(huà)出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線(xiàn)段之間的關(guān)系。
4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開(kāi),既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)知識(shí),用知識(shí)的意識(shí)是有很大的促進(jìn)的。《勾股定理》說(shuō)課稿5
一、教材分析
(一)教材地位與作用
勾股定理它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。
(二)教學(xué)目標(biāo)知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。情感態(tài)度與價(jià)值觀(guān):激發(fā)愛(ài)國(guó)熱情,體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿(mǎn)探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。
(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。
二、教法與學(xué)法分析:
學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀(guān)察、歸納、猜想和推理的能力。他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng)。
教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋?xiě)?yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀(guān)察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。
學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。
三、教學(xué)過(guò)程設(shè)計(jì)
1、創(chuàng)設(shè)情境,提出問(wèn)題
2、實(shí)驗(yàn)操作,模型構(gòu)建
3、回歸生活,應(yīng)用新知
4、知識(shí)拓展,鞏固深化
5、感悟收獲,布置作業(yè)
(一)創(chuàng)設(shè)情境提出問(wèn)題
(1)圖片欣賞:勾股定理數(shù)形圖____年希臘發(fā)行。美麗的勾股樹(shù)20__年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票。
設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。
(2)某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?
設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié)。
(二)實(shí)驗(yàn)操作模型構(gòu)建
1、等腰直角三角形(數(shù)格子)
2、一般直角三角形(割補(bǔ))
問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。
問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)
設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高。
通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理。
設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律。
(三)回歸生活應(yīng)用新知
讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心。
(四)知識(shí)拓展鞏固深化
基礎(chǔ)題,情境題,探索題。
設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識(shí)的運(yùn)用得到升華。
基礎(chǔ)題:直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為_(kāi),你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?
設(shè)計(jì)意圖:這道題立足于雙基。通過(guò)學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維。
情境題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?
設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。
探索題:做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。
設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。
(五)感悟收獲布置作業(yè):這節(jié)課你的收獲是什么?
作業(yè):
1、課本習(xí)題2、1
2、搜集有關(guān)勾股定理證明的資料。
板書(shū)設(shè)計(jì)
探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2、b2、c2。
設(shè)計(jì)說(shuō)明:
1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法。
2、讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平?!豆垂啥ɡ怼氛f(shuō)課稿6
今天我說(shuō)課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級(jí)數(shù)學(xué)下冊(cè)第十八章第一節(jié)的第一課時(shí)。
一、教學(xué)背景分析
1、教材分析
本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過(guò)20__年國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽?qǐng)D案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問(wèn)題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實(shí)際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來(lái),它有著豐富的歷史背景,在理論上占有重要的地位。
2、學(xué)情分析
通過(guò)前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識(shí),能夠進(jìn)行一般的推理和論證,但如何通過(guò)拼圖來(lái)證明勾股定理,學(xué)生對(duì)這種解決問(wèn)題的途徑還比較陌生,存在一定的難度,因此,我采用直觀(guān)教具、多媒體等手段,讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識(shí)的樂(lè)趣。
3、教學(xué)目標(biāo):
根據(jù)八年級(jí)學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):
知識(shí)與能力目標(biāo):了解勾股定理的發(fā)現(xiàn)過(guò)程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理;培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問(wèn)題總結(jié)規(guī)律的意識(shí)和能力.
過(guò)程與方法目標(biāo):通過(guò)創(chuàng)設(shè)情境,導(dǎo)入新課,引導(dǎo)學(xué)生探索勾股定理,并應(yīng)用它解決問(wèn)題,運(yùn)用了觀(guān)察、演示、實(shí)驗(yàn)、操作等方法學(xué)習(xí)新知。
情感態(tài)度價(jià)值觀(guān)目標(biāo):感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。
4、教學(xué)重點(diǎn)、難點(diǎn)
通過(guò)分析可見(jiàn),勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實(shí)踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué)
重難點(diǎn)為探索和證明勾股定理.
二、教材處理
根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過(guò)程中,以創(chuàng)設(shè)問(wèn)題情境為先導(dǎo),運(yùn)用直觀(guān)教具、多媒體等手段,激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,并開(kāi)展以探究活動(dòng)為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問(wèn)題,分析問(wèn)題,進(jìn)而解決問(wèn)題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。
三、教學(xué)策略
1、教法
“教必有法,而教無(wú)定法”,只有方法恰當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級(jí)學(xué)生思維活動(dòng)特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。
2、學(xué)法
“授人以魚(yú),不如授人以漁”,通過(guò)設(shè)計(jì)問(wèn)題序列,引導(dǎo)學(xué)生主動(dòng)探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
3、教學(xué)模式
根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識(shí),提高素質(zhì)能力。
四、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境,引入新課
利用多媒體課件,給學(xué)生出示20__年國(guó)際數(shù)學(xué)家大會(huì)的場(chǎng)面,通過(guò)觀(guān)察會(huì)徽?qǐng)D案,提出問(wèn)題:你見(jiàn)過(guò)這個(gè)圖案嗎?你聽(tīng)說(shuō)過(guò)勾股定理嗎?從現(xiàn)實(shí)生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習(xí)的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題。
(二)引導(dǎo)學(xué)生,探究新知
1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時(shí)發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問(wèn)題:現(xiàn)在也請(qǐng)你觀(guān)察,看看有什么發(fā)現(xiàn)?教師配合演示,使問(wèn)題更形象、具體。適當(dāng)補(bǔ)充等腰直角三角形邊長(zhǎng)為1、2時(shí),所形成的規(guī)律,使學(xué)生再次感知發(fā)現(xiàn)的規(guī)律。
2、提出猜想:在活動(dòng)1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過(guò)活動(dòng)2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問(wèn)題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。
3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對(duì)一個(gè)一般的直角三角形進(jìn)行證明.通過(guò)活動(dòng)3,充分引導(dǎo)學(xué)生利用直觀(guān)教具,進(jìn)行拼圖實(shí)驗(yàn),在動(dòng)手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問(wèn)題的多種方法,鼓勵(lì)創(chuàng)新,小組競(jìng)賽,引入競(jìng)爭(zhēng),教師參與討論,與學(xué)生交流,獲取信息,從而有針對(duì)性地引導(dǎo)學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習(xí)的過(guò)程中,感受到自我創(chuàng)造的快樂(lè),從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問(wèn)題的能力。
4、總結(jié)定理:讓學(xué)生自己總結(jié)定理,不完善之處由教師補(bǔ)充。在前面探究活動(dòng)的基礎(chǔ)上,學(xué)生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學(xué)生的語(yǔ)言表達(dá)能力和歸納概括能力。
(三)反饋訓(xùn)練,鞏固新知
學(xué)生對(duì)所學(xué)的知識(shí)是否掌握了,達(dá)到了什么程度?為了檢測(cè)學(xué)生對(duì)本課目標(biāo)的達(dá)成情況和加強(qiáng)對(duì)學(xué)生能力的培養(yǎng),設(shè)計(jì)一組有坡度的練習(xí)題:A組動(dòng)腦筋,想一想,是本節(jié)基礎(chǔ)知識(shí)的理解和直接應(yīng)用;B組求陰影部分的面積,建立了新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力。C組議一議,是一道實(shí)際應(yīng)用題型,給學(xué)生施展才智的機(jī)會(huì),讓學(xué)生獨(dú)立思考后,討論交流得出解決問(wèn)題的方法,增強(qiáng)了數(shù)學(xué)來(lái)源于實(shí)踐,反過(guò)來(lái)又作用于實(shí)踐的應(yīng)用意識(shí),達(dá)到了學(xué)以致用的目的。
(四)歸納小結(jié),深化新知
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問(wèn)題是什么?通過(guò)小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識(shí)成為體系。
(五)布置作業(yè),拓展新知
讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識(shí)得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。
(六)板書(shū)設(shè)計(jì),明確新知
本節(jié)課的板書(shū)設(shè)計(jì)分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識(shí)服務(wù)?!豆垂啥ɡ怼氛f(shuō)課稿7
一、教材分析
(一)教材地位
這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版八年級(jí)第一章第一節(jié)《探索勾股定理》第一課時(shí),它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。
(二)教學(xué)目標(biāo)
知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題.
過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.
情感態(tài)度與價(jià)值觀(guān):激發(fā)學(xué)生愛(ài)國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿(mǎn)探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).
(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.
二、教法與學(xué)法分析:
學(xué)情分析:八年級(jí)學(xué)生已經(jīng)具備一定的觀(guān)察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).
教法分析:結(jié)合八年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋?xiě)?yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀(guān)察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。
學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.
三、教學(xué)過(guò)程設(shè)計(jì)
1.創(chuàng)設(shè)情境,提出問(wèn)題
2.實(shí)驗(yàn)操作,模型構(gòu)建
3.回歸生活,應(yīng)用新知
4.知識(shí)拓展,鞏固深化5.感悟收獲,布置作業(yè)
(一)創(chuàng)設(shè)情境提出問(wèn)題
(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹(shù)20__年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票大會(huì)會(huì)標(biāo)設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.
(2)某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?
設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié).
二、實(shí)驗(yàn)操作模型構(gòu)建
1.等腰直角三角形(數(shù)格子)
2.一般直角三角形(割補(bǔ))
問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?
設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.
問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)
設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高.
通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理.
設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律.
三.回歸生活應(yīng)用新知
讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心.
四、知識(shí)拓展鞏固深化
基礎(chǔ)題,情境題,探索題.
設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.
基礎(chǔ)題:直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為_(kāi),你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?
設(shè)計(jì)意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.
情境題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?
設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。
探索題:做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。
設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.
五、感悟收獲布置作業(yè):這節(jié)課你的收獲是什么?
作業(yè):李景萍《探索勾股定理》第一課時(shí)說(shuō)課稿1、課本習(xí)題2.12、搜集有關(guān)勾股定理證明的資料.
板書(shū)設(shè)計(jì)探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
李景萍《探索勾股定理》第一課時(shí)說(shuō)課稿
設(shè)計(jì)說(shuō)明::1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.
2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平.《勾股定理》說(shuō)課稿8
一、教材分析
(一)教材地位與作用
勾股定理它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。
(二)教學(xué)目標(biāo)知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。情感態(tài)度與價(jià)值觀(guān):激發(fā)愛(ài)國(guó)熱情,體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿(mǎn)探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。
(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。
二、教法與學(xué)法分析:
學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀(guān)察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的.能力還有待加強(qiáng).
教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋?xiě)?yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀(guān)察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。
學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。
三、教學(xué)過(guò)程設(shè)計(jì)
1、創(chuàng)設(shè)情境,提出問(wèn)題2、實(shí)驗(yàn)操作,模型構(gòu)建3、回歸生活,應(yīng)用新知4、知識(shí)拓展,鞏固深化5、感悟收獲,布置作業(yè)
(一)創(chuàng)設(shè)情境提出問(wèn)題
(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹(shù)20__年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票大會(huì)會(huì)標(biāo)
設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。
(2)某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6。5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2。5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?
設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié)。
二、實(shí)驗(yàn)操作模型構(gòu)建
1、等腰直角三角形(數(shù)格子)
2、一般直角三角形(割補(bǔ))
問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。
問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)
設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高。
通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理。
設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律。
三?;貧w生活應(yīng)用新知
讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心。
四、知識(shí)拓展鞏固深化
基礎(chǔ)題,情境題,探索題。
設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識(shí)的運(yùn)用得到升華。
基礎(chǔ)題:直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為_(kāi),你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?
設(shè)計(jì)意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.
情境題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?
設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。
探索題:做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。
設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。
五、感悟收獲布置作業(yè):這節(jié)課你的收獲是什么?
作業(yè):1、課本習(xí)題2、1
2、搜集有關(guān)勾股定理證明的資料。
板書(shū)設(shè)計(jì)探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2?b2?c2
設(shè)計(jì)說(shuō)明:1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.
2、讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平?!豆垂啥ɡ怼氛f(shuō)課稿9尊敬的各位領(lǐng)導(dǎo),各位老師:
大家好!今天我說(shuō)課的內(nèi)容是初中八年級(jí)數(shù)學(xué)人教版教材第十八章第一節(jié)《勾股定理》(第一課時(shí)),下面我分五部分來(lái)匯報(bào)我這節(jié)課的教學(xué)設(shè)計(jì),這就是"教材分析"、"學(xué)情分析"、"教法選擇"、"學(xué)法指導(dǎo)"、"教學(xué)過(guò)程"。
一、教材分析
(一)教材地位和作用
勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系,將幾何圖形與數(shù)字聯(lián)系起來(lái)。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在生產(chǎn)生活中有著廣泛的應(yīng)用。而且它在其它自然學(xué)科中也常常用到。因此,這節(jié)課有著舉足輕重的地位。
(二)教學(xué)目標(biāo)
根據(jù)新課程標(biāo)準(zhǔn)的要求和本課的特點(diǎn),結(jié)合學(xué)生的實(shí)際情況,我確定了本課的教學(xué)目標(biāo):
1、知識(shí)與技能方面
了解勾股定理的文化背景,經(jīng)歷探索勾股定理的過(guò)程,掌握直角三角形三邊之間的數(shù)量關(guān)系,并能簡(jiǎn)單應(yīng)用。
2、過(guò)程與方法方面
經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,能感受到數(shù)學(xué)思考過(guò)程的條理性,發(fā)展數(shù)學(xué)的說(shuō)理和簡(jiǎn)單的推理的意識(shí),和語(yǔ)言表達(dá)的能力,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。
3、情感態(tài)度與價(jià)值觀(guān)方面
(1)通過(guò)了解勾股定理的歷史,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。
(2)通過(guò)研究一系列富有探究性的問(wèn)題,培養(yǎng)學(xué)生與他人交流、合作的意識(shí)和品質(zhì)。
(三)教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):掌握勾股定理,并能用它來(lái)解決一些簡(jiǎn)單的問(wèn)題。
教學(xué)難點(diǎn):勾股定理的證明。
二、學(xué)情分析
我們班日常經(jīng)常使用多媒體輔助教學(xué)。經(jīng)過(guò)一年多的幾何學(xué)習(xí),學(xué)生對(duì)幾何圖形的觀(guān)察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確歸納所學(xué)知識(shí),通過(guò)學(xué)習(xí)小組討論交流,能夠形成解決問(wèn)題的思路。現(xiàn)在的學(xué)生已經(jīng)厭倦教師單獨(dú)的說(shuō)教方式,希望教師設(shè)計(jì)便于他們進(jìn)行觀(guān)察的幾何環(huán)境,給他們自己探索、發(fā)表自己見(jiàn)解和表現(xiàn)自己才華的機(jī)會(huì);更希望教師滿(mǎn)足他們的創(chuàng)造愿望。
三、教法選擇
根據(jù)本節(jié)課的教學(xué)目標(biāo)、教學(xué)內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),結(jié)合我校的“當(dāng)堂達(dá)標(biāo)”教學(xué)模式,我在教法上采用引導(dǎo)發(fā)現(xiàn)法為主,并以分析法、討論法相結(jié)合。設(shè)計(jì)"觀(guān)察——討論—?dú)w納"的教學(xué)方法,意在幫助學(xué)生通過(guò)自己動(dòng)手實(shí)驗(yàn)和直觀(guān)情景觀(guān)察,從實(shí)踐中獲取知識(shí),并通過(guò)討論來(lái)深化對(duì)知識(shí)的理解。本節(jié)課采用了多媒體輔助教學(xué),能夠直觀(guān)、生動(dòng)的反應(yīng)圖形,增加課堂的容量,同時(shí)有利于突出重點(diǎn)、分散難點(diǎn),增強(qiáng)教學(xué)形象性,更好的提高課堂效率。
四、學(xué)法指導(dǎo):
為了充分體現(xiàn)《新課標(biāo)》的要求,培養(yǎng)學(xué)生的觀(guān)察分析能力,邏輯思維能力,積累豐富的數(shù)學(xué)學(xué)習(xí)經(jīng)驗(yàn),這節(jié)課主要采用觀(guān)察分析,自主探索與合作交流的學(xué)習(xí)方法,使學(xué)生積極參與教學(xué)過(guò)程。在教學(xué)過(guò)程中展開(kāi)思維,培養(yǎng)學(xué)生提出問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,進(jìn)一步體會(huì)觀(guān)察、類(lèi)比、分析、從特殊到一般等數(shù)學(xué)思想。借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主人。
五、教學(xué)過(guò)程
根據(jù)《新課標(biāo)》中"要引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動(dòng)中"的教學(xué)要求,本節(jié)課的教學(xué)過(guò)程我是這樣設(shè)計(jì)的:
(一)創(chuàng)設(shè)情境,引入新課
一個(gè)設(shè)計(jì)合理的情境引入可以說(shuō)在一定程度上決定著學(xué)生能否帶著興趣積極投入到本節(jié)課的學(xué)習(xí)中。為了體現(xiàn)數(shù)學(xué)源于生活,數(shù)學(xué)是從人的需要中產(chǎn)生的,學(xué)習(xí)數(shù)學(xué)的目的是為了用數(shù)學(xué)解決實(shí)際問(wèn)題。我設(shè)計(jì)了以下題目:
星期日老師帶領(lǐng)全班同學(xué)去某山風(fēng)景區(qū)游玩,同學(xué)們看到山勢(shì)險(xiǎn)峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車(chē)線(xiàn)路,已知山底端C處與地面B處相距1200米,
∠ACB=90°,你能用所學(xué)知識(shí)算出纜車(chē)路線(xiàn)AB長(zhǎng)應(yīng)為多少?
答案是不能的。然后教師指出,通過(guò)這節(jié)課的學(xué)習(xí),問(wèn)題將迎刃而解。
設(shè)計(jì)意圖:以趣味性題目引入。從而設(shè)置懸念,激發(fā)學(xué)生的學(xué)習(xí)興趣。教師引導(dǎo)學(xué)生把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,這其中滲透了一種數(shù)學(xué)思想,對(duì)于學(xué)生也是一種挑戰(zhàn),能激發(fā)學(xué)生探究的欲望,自然引出下面的環(huán)節(jié)。
緊接著出示本節(jié)課的學(xué)習(xí)目標(biāo):
1、了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過(guò)程。
2、掌握勾股定理的內(nèi)容,并會(huì)簡(jiǎn)單應(yīng)用。
(二)勾股定理的探索
1、猜想結(jié)論
(1)探究一:等腰直角三角形三邊關(guān)系。
由課本64頁(yè)畢達(dá)哥拉斯的故事,探究等腰直角三角形三邊關(guān)系。結(jié)合課件中格點(diǎn)圖形的面積,學(xué)生自主探究,通過(guò)計(jì)算、討論、總結(jié),得出結(jié)論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。
在此過(guò)程中,給學(xué)生充分的時(shí)間、觀(guān)察、比較、交流,最后通過(guò)活動(dòng)讓學(xué)生用語(yǔ)言概括總結(jié)。
提問(wèn):等腰直角三角形有這樣的性質(zhì),其他的直角三角形也有這樣的性質(zhì)嗎?
(2、)探究二:一般的直角三角形三邊關(guān)系。
在課件中的格點(diǎn)圖形中,利用面積,再次探究直角三角形的三邊關(guān)系。學(xué)生自主探究,通過(guò)計(jì)算、討論、總結(jié),得出結(jié)論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。
設(shè)計(jì)意圖:組織學(xué)生進(jìn)行討論,在此基礎(chǔ)上教師引導(dǎo)學(xué)生從三邊的平方有何大小關(guān)系入手進(jìn)行觀(guān)察。教師在多媒體課件上直觀(guān)地演示。通過(guò)學(xué)生自己探索、討論,由學(xué)生自己得出結(jié)論。這樣,讓學(xué)生參與定理的再發(fā)現(xiàn)過(guò)程,他們通過(guò)自己觀(guān)察、計(jì)算所得出的定理,在心理產(chǎn)生自豪感,從而增強(qiáng)學(xué)生的學(xué)習(xí)數(shù)學(xué)的自信心。
2、證明猜想
目前世界上證明該勾股定理的方法有很多種,而我國(guó)古代數(shù)學(xué)家利用拼接、割補(bǔ)圖形,計(jì)算面積的思路提供了很多種證明方法,下面我們通過(guò)古人趙爽的方法進(jìn)行證明。學(xué)生分組活動(dòng),根據(jù)圖形的面積進(jìn)行計(jì)算,推導(dǎo)出勾股定理的一般形式:a+b=c。即直角三角形兩直角邊的平方和等于斜邊的平方、
設(shè)計(jì)意圖:通過(guò)利用多媒體課件的演示,更直觀(guān)、形象的向?qū)W生介紹用拼接、割補(bǔ)圖形,計(jì)算面積的證明方法,使學(xué)生認(rèn)識(shí)到證明的必要性、結(jié)論的確定性,感受到前人的偉大和智慧。
3、簡(jiǎn)要介紹勾股定理命名的由來(lái)
我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被記載于我國(guó)古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中、我國(guó)稱(chēng)這個(gè)結(jié)論為"勾股定理",西方畢達(dá)哥拉斯于公元前五世紀(jì)發(fā)現(xiàn)了勾股定理,但他比商高晚出生五百多年。
設(shè)計(jì)意圖:對(duì)比以上事實(shí)對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激勵(lì)他們奮發(fā)向上。
(三)勾股定理的應(yīng)用
1、利用勾股定理,解決引入中的問(wèn)題。體會(huì)數(shù)學(xué)在實(shí)際生活中的應(yīng)用。
2、教學(xué)例1:課本66頁(yè)探究1
師生討論、分析:木板的寬2、2米大于1米,所以橫著不能從門(mén)框內(nèi)通過(guò).
木板的寬2、2米大于2米,所以豎著不能從門(mén)框內(nèi)通過(guò).
因?yàn)閷?duì)角線(xiàn)AC的長(zhǎng)度最大,所以只能試試斜著能否通過(guò).
從而將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題.
提示:
(1)在圖中構(gòu)造出一個(gè)直角三角形。(連接AC)
(2)知道直角△ABC的那條邊?
(3)知道直角三角形兩條邊長(zhǎng)求第三邊用什么方法呢?
設(shè)計(jì)意圖:此題是將實(shí)際為題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,從中抽象出Rt△ABC,并求出斜邊AC的長(zhǎng)。本例意在滲透實(shí)際問(wèn)題和勾股定理的知識(shí)聯(lián)系。通過(guò)系列問(wèn)題的設(shè)置和解決,旨在降低難度,分散難點(diǎn),使難點(diǎn)予以突破,讓學(xué)生掌握勾股定理在具體問(wèn)題中的應(yīng)用,使學(xué)生獲得新知,體驗(yàn)成功,從而增加學(xué)習(xí)興趣。
(四)、課堂練習(xí)習(xí)題18、11、5。學(xué)生板演,師生點(diǎn)評(píng)。
設(shè)計(jì)意圖:通過(guò)練習(xí)使學(xué)生加深對(duì)勾股定理的理解,讓學(xué)生比較練習(xí)題和例題中條件的異同,進(jìn)一步讓學(xué)生理解勾股定理的運(yùn)用。
(五)課堂小結(jié)
對(duì)學(xué)生提問(wèn):"通過(guò)這節(jié)課的學(xué)習(xí)有什么收獲?"
學(xué)生同桌間暢談自己的學(xué)習(xí)感受和體會(huì),并請(qǐng)個(gè)別學(xué)生發(fā)言。
設(shè)計(jì)意圖:讓學(xué)生自己小結(jié),活躍了氣氛,做到全員參與,理清了知識(shí)脈絡(luò),強(qiáng)化了重點(diǎn),培養(yǎng)了學(xué)生口頭表達(dá)能力。
(六)達(dá)標(biāo)訓(xùn)練與反饋
設(shè)計(jì)意圖:必做題較為簡(jiǎn)單,要求全體學(xué)生完成;選作題有一點(diǎn)的難度,基礎(chǔ)較好的學(xué)生能夠完成,體現(xiàn)分層教學(xué)。
以上內(nèi)容,我僅從"說(shuō)教材","說(shuō)學(xué)情"、"說(shuō)教法"、"說(shuō)學(xué)法"、"說(shuō)教學(xué)過(guò)程"五個(gè)方面來(lái)說(shuō)明這堂課"教什么"和"怎么教",也闡述了"為什么這樣教",讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),探索過(guò)程中,會(huì)為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境。希望得到各位專(zhuān)家領(lǐng)導(dǎo)的指導(dǎo)與指正,謝謝!《勾股定理》說(shuō)課稿10
尊敬的各位評(píng)委:
您們好!我來(lái)自明光市張八嶺中學(xué)。今天我說(shuō)課的課題是《勾股定理》。本課選自九年義務(wù)教育滬科版八年級(jí)下冊(cè)初中數(shù)學(xué)第十九章第一節(jié)的第一課時(shí)。
下面我從教學(xué)背景分析、教材處理、教學(xué)策略、教學(xué)流程方面對(duì)本課的設(shè)計(jì)進(jìn)行說(shuō)明。
一、教學(xué)背景分析
1、教材分析
本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過(guò)一枚1955年由希臘發(fā)行的郵票上圖案的故事,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問(wèn)題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),同時(shí)在實(shí)際生活中用途也很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來(lái),它有著豐富的歷史背景,在理論上占有重要的地位。
2、學(xué)情分析
學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識(shí),如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過(guò)不少利用圖形面積來(lái)探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識(shí)形成知識(shí)鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。
3、教學(xué)目標(biāo):
根據(jù)八年級(jí)學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):
知識(shí)與技能:了解勾股定理的發(fā)現(xiàn)過(guò)程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理;培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問(wèn)題總結(jié)規(guī)律的意識(shí)和能力.
過(guò)程與方法:在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀(guān)察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和從特殊到一般的思想方法。
情感態(tài)度價(jià)值觀(guān):感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。
4、教學(xué)重點(diǎn)、難點(diǎn)
通過(guò)研究分析可見(jiàn),勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實(shí)踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué)重點(diǎn)為勾股定理的證明與運(yùn)用,教學(xué)難點(diǎn)為用面積法證明勾股定理
二、教材處理
根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過(guò)程中,我先以數(shù)學(xué)史中的一個(gè)有趣的故事來(lái)激發(fā)學(xué)生學(xué)習(xí)興趣,運(yùn)用直觀(guān)教具、多媒體等手段,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,并開(kāi)展以探究活動(dòng)為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問(wèn)題,分析問(wèn)題,進(jìn)而解決問(wèn)題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。
三、教學(xué)策略
1、教法
“教必有法,而教無(wú)定法”,只有方法恰當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級(jí)學(xué)生思維活動(dòng)特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。
2、學(xué)法
“授人以魚(yú),不如授人以漁”,通過(guò)設(shè)計(jì)問(wèn)題序列,引導(dǎo)學(xué)生主動(dòng)探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
3、教學(xué)手段
充分利用多媒體,提高教學(xué)效率,增大教學(xué)容量;通過(guò)多媒體演示,激發(fā)學(xué)生學(xué)習(xí)興趣,啟迪學(xué)生思維的發(fā)展;通過(guò)直觀(guān)教具,進(jìn)行動(dòng)手操作,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的廣闊性。
4、教學(xué)模式
根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識(shí),提高素質(zhì)能力。
四、教學(xué)流程
(一)創(chuàng)設(shè)情境,引入新課(時(shí)長(zhǎng)2~3分鐘)
我利用多媒體課件,給學(xué)生展示一枚1955年由希臘發(fā)行的郵票,并問(wèn)學(xué)生是否想聽(tīng)這枚郵票背后的故事?
在20__多年前,古希臘有一位著名的數(shù)學(xué)家——畢達(dá)哥拉斯,有次參加一位政要人物邀請(qǐng)的餐會(huì),這位主人的宮殿般豪華的餐廳鋪著正方形的美麗的大理石地磚,由于大餐遲遲不上桌,這些饑腸轆轆的貴賓頗有怨言,但這位善于觀(guān)察和理解的數(shù)學(xué)家卻凝視腳下這些排列規(guī)則,美麗的方形瓷磚,畢達(dá)哥拉斯不只是欣賞瓷磚的美麗,而是想到它們和“數(shù)”之間的關(guān)系,于是他拿了畫(huà)筆并且蹲在地板上,選了一塊瓷磚以它的對(duì)角線(xiàn)為邊畫(huà)了一個(gè)大正方形,同學(xué)們,你們知道他發(fā)現(xiàn)了什么嗎?
對(duì)學(xué)生的回答進(jìn)行引導(dǎo),梳理,總結(jié),可以得到有關(guān)三個(gè)正方形面積的結(jié)論。進(jìn)而引入本節(jié)課的標(biāo)題:19.1勾股定理(板書(shū))
(以小故事激發(fā)學(xué)生的興趣,隨后以開(kāi)放式的問(wèn)題形式,讓學(xué)生觀(guān)察猜想。本環(huán)節(jié)體現(xiàn)了人文關(guān)懷,并兼顧了教材中的探究,為下一步勾股定理的證明埋下伏筆。)
(二)引導(dǎo)學(xué)生,探究新知(教學(xué)時(shí)長(zhǎng)15~20分鐘)
1、初步感知定理:
(1)用什么方法來(lái)探求:勾股定理即直角三角形三邊數(shù)量關(guān)系呢?
回憶我們?cè)?jīng)利用圖形面積探索過(guò)數(shù)學(xué)公式,大家還記得在哪用過(guò)嗎?
(學(xué)生討論)
課件展示:平方差公式、完全平方公式、單項(xiàng)式乘多項(xiàng)式、多項(xiàng)式乘多項(xiàng)式的引出.
今天,讓我們?cè)囈辉囃ㄟ^(guò)計(jì)算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系.(從學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)出發(fā),將探求邊長(zhǎng)之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺(jué)得解決今天問(wèn)題的方法并不陌生,增強(qiáng)探索問(wèn)題的信心.)
(2)展示課本上圖19—1和圖19—2(1)的圖形,觀(guān)察圖中三個(gè)正方形有什么關(guān)系?
讓學(xué)生通過(guò)觀(guān)察,計(jì)算出三個(gè)正方形的面積可以發(fā)現(xiàn):對(duì)于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則AB。
(這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。)
(3)緊接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出圖19.2(2)(一般直角三角形)。學(xué)生可以同樣求出兩個(gè)小正方形面積,只是求大正方形的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫(huà)出圖形,再剪一剪、拼一拼,通過(guò)小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也存在兩直角邊的平方和等于斜邊的平方。
給出書(shū)中的定理(板書(shū))并用彎曲的手臂形象地表示勾、股、弦的概念,板書(shū)勾股定理,進(jìn)而給出字母表達(dá)式.
通過(guò)學(xué)生的動(dòng)手操作、合作交流,來(lái)獲取知識(shí),這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會(huì)到觀(guān)察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過(guò)程,提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力。
2、證明結(jié)論(教學(xué)時(shí)長(zhǎng)8~10分鐘):
出示書(shū)中圖19—3,與學(xué)生共同分析證明并板書(shū)過(guò)程。通過(guò)給出定理的證明過(guò)程讓學(xué)生體會(huì)到數(shù)學(xué)知識(shí)從特殊性到一般性,并對(duì)一般性結(jié)論進(jìn)行論證的嚴(yán)謹(jǐn)性。
3、勾股定理簡(jiǎn)介:(教學(xué)時(shí)長(zhǎng)1~2分鐘)
借助多媒體課件,通過(guò)介紹古代在勾股定理研究方面取得的成就,感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體會(huì)古人偉大的智慧。
(三)反饋訓(xùn)練,鞏固新知(教學(xué)時(shí)長(zhǎng)6~8分鐘)
讓學(xué)生完成兩項(xiàng)任務(wù):
任務(wù)一:教材練習(xí)第一題;
任務(wù)二:1,Rt?ABC中,c為斜邊,a=3,b=4.,則c=?
2,?ABC中c為最長(zhǎng)邊,a=3,b=4,則c=?
任務(wù)一和任務(wù)二中第一題都是基礎(chǔ)題,對(duì)于任務(wù)二中第二題是提高題,對(duì)于做錯(cuò)的學(xué)生進(jìn)行引導(dǎo)讓其思考,再告知錯(cuò)誤的原因。通過(guò)練習(xí),讓學(xué)生更好的體會(huì)到,勾股定理揭示的是直角三角形三邊之間的數(shù)量關(guān)系,讓學(xué)生能夠更好的將數(shù)與形緊密聯(lián)系起來(lái)進(jìn)行思考。
(四)歸納小結(jié),深化新知(教學(xué)時(shí)長(zhǎng)1~2分鐘)
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問(wèn)題是什么???
通過(guò)小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識(shí)成為體系。
(五)布置作業(yè),拓展新知(教學(xué)時(shí)長(zhǎng)1~2分鐘)
讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識(shí)得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。
(六)板書(shū)設(shè)計(jì),明確新知
本節(jié)課的板書(shū)設(shè)計(jì),它分為三塊:一塊是復(fù)習(xí)引入,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識(shí)服務(wù)。
以上內(nèi)容,我僅從教學(xué)背景分析、教材處理、教學(xué)策略、教學(xué)流程方面說(shuō)明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專(zhuān)家領(lǐng)導(dǎo)對(duì)本次說(shuō)課提出寶貴的意見(jiàn),謝謝!《勾股定理》說(shuō)課稿11
一、勾股定理是我國(guó)古數(shù)學(xué)的一項(xiàng)偉大成就.勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線(xiàn)是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面.教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析,使學(xué)生獲得較為直觀(guān)的印象,通過(guò)聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用.據(jù)此,制定教學(xué)目標(biāo)如下:
1.知識(shí)和方法目標(biāo):通過(guò)對(duì)一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對(duì)勾股定理的理解.2.過(guò)程與方法目標(biāo):通過(guò)對(duì)一些題目的探討,以達(dá)到掌握知識(shí)的目的.
3.情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美.
教學(xué)重點(diǎn):勾股定理的應(yīng)用.教學(xué)難點(diǎn):勾股定理的正確使用.
教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理.
二.說(shuō)教法和學(xué)法
1.以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程.
2.切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀(guān)察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力.
3.通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀(guān)察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望.
三、教學(xué)程序本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動(dòng)手,動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下:回顧問(wèn):勾股定理的內(nèi)容是什么?勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來(lái)學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用.《勾股定理》說(shuō)課稿12
一、說(shuō)教材
本課時(shí)是華師大版八年級(jí)(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎(chǔ)上對(duì)勾股定理的應(yīng)用之一。勾股定理是我國(guó)古數(shù)學(xué)的一項(xiàng)偉大成就。勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線(xiàn)是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析,使學(xué)生獲得較為直觀(guān)的印象,通過(guò)聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用。據(jù)此,制定教學(xué)目標(biāo)如下:
1、知識(shí)和方法目標(biāo):通過(guò)對(duì)一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對(duì)勾股定理的理解。
2、過(guò)程與方法目標(biāo):通過(guò)對(duì)一些題目的探討,以達(dá)到掌握知識(shí)的目的。
3、情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美。
教學(xué)重點(diǎn):勾股定理的應(yīng)用。
教學(xué)難點(diǎn):勾股定理的正確使用。
教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理。
二、說(shuō)教法和學(xué)法
1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。
2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀(guān)察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。
3、通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀(guān)察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
三、教學(xué)程序
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動(dòng)手,動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下:
一、回顧問(wèn):
勾股定理的內(nèi)容是什么?勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來(lái)學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用。
二、新授課例
1、如圖所示,有一個(gè)圓柱,它的高AB等于4厘米,底面周長(zhǎng)等于20厘米,在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面與A點(diǎn)相對(duì)的C點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路線(xiàn)是多少?(課本P57圖14.2.1)
①學(xué)生取出自制圓柱,,嘗試從A點(diǎn)到C點(diǎn)沿圓柱側(cè)面畫(huà)出幾條路線(xiàn)。思考:那條路線(xiàn)最短?
②如圖,將圓柱側(cè)面剪開(kāi)展成一個(gè)長(zhǎng)方形,從A點(diǎn)到C點(diǎn)的最短路線(xiàn)是什么?你畫(huà)得對(duì)嗎?
③螞蟻從A點(diǎn)出發(fā),想吃到C點(diǎn)處的食物,它沿圓柱側(cè)面爬行的最短路線(xiàn)是什么?
思路點(diǎn)撥:引導(dǎo)學(xué)生在自制的圓柱側(cè)面上尋找最短路線(xiàn);提醒學(xué)生將圓柱側(cè)面展開(kāi)成長(zhǎng)方形,引導(dǎo)學(xué)生觀(guān)察分析發(fā)現(xiàn)“兩點(diǎn)之間的所有線(xiàn)中,線(xiàn)段最短”。學(xué)生在自主探索的基礎(chǔ)上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從A點(diǎn)往上爬到B點(diǎn)后順著直徑爬向C點(diǎn)爬行的路線(xiàn)是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側(cè)面往上爬的,我就告訴學(xué)生:“課本中的圓柱體是沒(méi)有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本P58圖14.2.3)
思路點(diǎn)撥:廠(chǎng)門(mén)的寬
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《我的第一本書(shū)》教案
- 勞務(wù)溢價(jià)合同范本
- 司機(jī)簽合作合同范本
- 勞動(dòng)入職合同范例
- 出售手機(jī)機(jī)房合同范本
- 卷簾訂購(gòu)合同范例
- 兼職消防聘用合同范本
- 鄉(xiāng)村建筑采購(gòu)合同范本
- 分層廠(chǎng)房出售合同范本
- 縣后公寓轉(zhuǎn)租合同范本
- 小學(xué)二年級(jí)有余數(shù)的除法口算題(共300題)
- 北京市矢量地圖-可改顏色
- 【冠心病探究文獻(xiàn)綜述2000字】
- 幼兒園大班音樂(lè)活動(dòng)《小籬笆》
- T∕CCCMHPIE 1.3-2016 植物提取物 橙皮苷
- 毫火針療法PPT課件
- 三年級(jí)部編版語(yǔ)文下冊(cè)第二單元日積月累
- 前輪轂止口不合格8D報(bào)告
- 蝴蝶蘭溫室工廠(chǎng)化栽培管理技術(shù)
- 銀行對(duì)賬單(共9頁(yè))
- 企業(yè)職工流動(dòng)登記表格模板(最新)
評(píng)論
0/150
提交評(píng)論