![2023河南中考數(shù)學(xué)考點整理_第1頁](http://file4.renrendoc.com/view/1106e166830646f96a73b989a70ced90/1106e166830646f96a73b989a70ced901.gif)
![2023河南中考數(shù)學(xué)考點整理_第2頁](http://file4.renrendoc.com/view/1106e166830646f96a73b989a70ced90/1106e166830646f96a73b989a70ced902.gif)
![2023河南中考數(shù)學(xué)考點整理_第3頁](http://file4.renrendoc.com/view/1106e166830646f96a73b989a70ced90/1106e166830646f96a73b989a70ced903.gif)
![2023河南中考數(shù)學(xué)考點整理_第4頁](http://file4.renrendoc.com/view/1106e166830646f96a73b989a70ced90/1106e166830646f96a73b989a70ced904.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第2023河南中考數(shù)學(xué)考點整理
河南中考數(shù)學(xué)考點整理
1、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
2、定理1關(guān)于某條直線對稱的兩個圖形是全等形
3、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
4、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上
5、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
6、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
7、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形
8、定理四邊形的內(nèi)角和等于360°
9、四邊形的外角和等于360°1
0、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
11、推論任意多邊的外角和等于360°
12、平行四邊形性質(zhì)定理1平行四邊形的對角相等
13、平行四邊形性質(zhì)定理2平行四邊形的對邊相等
14、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
15、推論1三個角都相等的三角形是等邊三角形
16、推論2有一個角等于60°的等腰三角形是等邊三角形
17、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
18、直角三角形斜邊上的中線等于斜邊上的一半
中考數(shù)學(xué)考點整理
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a0時,拋物線向上開口;當(dāng)a0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(即ab0),對稱軸在y軸左;
當(dāng)a與b異號時(即ab0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數(shù)
Δ=b^2-4ac0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac0時,拋物線與x軸沒有交點。
X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
中考數(shù)學(xué)考點
1.代數(shù)式與有理式
用運(yùn)算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。
沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。
有除法運(yùn)算并且除式中含有字母的有理式叫做分式。
3.單項式與多項式
沒有加減運(yùn)算的整式叫做單項式(數(shù)字與字母的積—包括單獨的一個數(shù)或字母)。
幾個單項式的和,叫做多項式。
說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項式、多項式區(qū)分開。②進(jìn)行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如=x,=│x│等。
4.系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看;
5.同類項及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年公園綠化養(yǎng)護(hù)及設(shè)備維修協(xié)議
- 2025年產(chǎn)品質(zhì)量控制與檢測合同格式
- 2025年信息安全管理系統(tǒng)維護(hù)合同
- 2025年個人退伙協(xié)議策劃指導(dǎo)
- 2025年協(xié)作共進(jìn)的諒解協(xié)議
- 2025年以完成預(yù)定工作內(nèi)容為期限的勞動合同書
- 2025年全球貿(mào)易合同履行效率評估與改進(jìn)建議
- 2025年制造業(yè)勞動外包服務(wù)合作框架協(xié)議
- 2025年辦公設(shè)備購銷協(xié)議
- 2025年中藥廢棄物資源化利用合作協(xié)議
- 年“春節(jié)”前后安全自查系列用表完整
- 社交禮儀-儀態(tài)禮儀
- 2024暑期夏日露營潮趣互動音樂節(jié)(唱享潮夏旋律季)活動策劃方案
- 臨床成人ICU患者外周動脈導(dǎo)管管理要點
- 2024年長沙衛(wèi)生職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫及參考答案
- 《讓學(xué)生創(chuàng)造著長大》讀書心得
- 江蘇省連云港市灌南華僑高級中學(xué)2024屆高三第二次模擬考試數(shù)學(xué)試卷含解析
- 畢業(yè)旅游活動設(shè)計與實施方案
- 政企業(yè)務(wù)部門培訓(xùn)
- 2024年高考?xì)v史:全3冊核心知識梳理和大事年表
- 非標(biāo)設(shè)備方案
評論
0/150
提交評論