海南省文昌市2023屆中考數(shù)學模擬精編試卷含解析_第1頁
海南省文昌市2023屆中考數(shù)學模擬精編試卷含解析_第2頁
海南省文昌市2023屆中考數(shù)學模擬精編試卷含解析_第3頁
海南省文昌市2023屆中考數(shù)學模擬精編試卷含解析_第4頁
海南省文昌市2023屆中考數(shù)學模擬精編試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.52.下表是某校合唱團成員的年齡分布,對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)3.某車間需加工一批零件,車間20名工人每天加工零件數(shù)如表所示:每天加工零件數(shù)45678人數(shù)36542每天加工零件數(shù)的中位數(shù)和眾數(shù)為()A.6,5 B.6,6 C.5,5 D.5,64.下列四個多項式,能因式分解的是()A.a(chǎn)-1 B.a(chǎn)2+1C.x2-4y D.x2-6x+95.如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點,則以DE為直徑的圓與BC的位置關系是()A.相切 B.相交 C.相離 D.無法確定6.如圖,把△ABC剪成三部分,邊AB,BC,AC放在同一直線上,點O都落在直線MN上,直線MN∥AB,則點O是△ABC的()A.外心 B.內(nèi)心 C.三條中線的交點 D.三條高的交點7.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.8.觀察下面“品”字形中各數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為()A.23 B.75 C.77 D.1399.某車間有27名工人,生產(chǎn)某種由一個螺栓套兩個螺母的產(chǎn)品,每人每天生產(chǎn)螺母16個或螺栓22個,若分配x名工人生產(chǎn)螺栓,其他工人生產(chǎn)螺母,恰好使每天生產(chǎn)的螺栓和螺母配套,則下面所列方程中正確的是()A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)10.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(

).A. B.- C.- D.11.如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為()A.115° B.120° C.130° D.140°12.商場將某種商品按原價的8折出售,仍可獲利20元.已知這種商品的進價為140元,那么這種商品的原價是()A.160元B.180元C.200元D.220元二、填空題:(本大題共6個小題,每小題4分,共24分.)13.函數(shù)y=中自變量x的取值范圍是________,若x=4,則函數(shù)值y=________.14.不等式組有2個整數(shù)解,則m的取值范圍是_____.15.如圖,在矩形ABCD中,AB=,E是BC的中點,AE⊥BD于點F,則CF的長是_________.16.已知,如圖,正方形ABCD的邊長是8,M在DC上,且DM=2,N是AC邊上的一動點,則DN+MN的最小值是_____.17.在一個不透明的袋子里裝有除顏色外其它均相同的紅、藍小球各一個,每次從袋中摸出一個小球記下顏色后再放回,摸球三次,“僅有一次摸到紅球”的概率是_____.18.如圖,在每個小正方形邊長為的網(wǎng)格中,的頂點,,均在格點上,為邊上的一點.線段的值為______________;在如圖所示的網(wǎng)格中,是的角平分線,在上求一點,使的值最小,請用無刻度的直尺,畫出和點,并簡要說明和點的位置是如何找到的(不要求證明)___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知點A(1,a)是反比例函數(shù)y1=的圖象上一點,直線y2=﹣與反比例函數(shù)y1=的圖象的交點為點B、D,且B(3,﹣1),求:(Ⅰ)求反比例函數(shù)的解析式;(Ⅱ)求點D坐標,并直接寫出y1>y2時x的取值范圍;(Ⅲ)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.20.(6分)已知,如圖,是的平分線,,點在上,,,垂足分別是、.試說明:.21.(6分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,點D是點C關于拋物線對稱軸的對稱點,連接CD,過點D作DH⊥x軸于點H,過點A作AE⊥AC交DH的延長線于點E.(1)求線段DE的長度;(2)如圖2,試在線段AE上找一點F,在線段DE上找一點P,且點M為直線PF上方拋物線上的一點,求當△CPF的周長最小時,△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點K,則是否存在這樣的點K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.22.(8分)有A、B兩組卡片共1張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,1.它們除了數(shù)字外沒有任何區(qū)別,隨機從A組抽取一張,求抽到數(shù)字為2的概率;隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?23.(8分)深圳某書店為了迎接“讀書節(jié)”制定了活動計劃,以下是活動計劃書的部分信息:“讀書節(jié)“活動計劃書書本類別科普類文學類進價(單位:元)1812備注(1)用不超過16800元購進兩類圖書共1000本;科普類圖書不少于600本;…(1)已知科普類圖書的標價是文學類圖書標價的1.5倍,若顧客用540元購買的圖書,能單獨購買科普類圖書的數(shù)量恰好比單獨購買文學類圖書的數(shù)量少10本,請求出兩類圖書的標價;經(jīng)市場調査后發(fā)現(xiàn):他們高估了“讀書節(jié)”對圖書銷售的影響,便調整了銷售方案,科普類圖書每本標價降低a(0<a<5)元銷售,文學類圖書價格不變,那么書店應如何進貨才能獲得最大利潤?24.(10分)2018年4月份,鄭州市教育局針對鄭州市中小學參與課外輔導進行調查,根據(jù)學生參與課外輔導科目的數(shù)量,分成了:1科、2科、3科和4科,以下簡記為:1、2、3、4,并根據(jù)調查結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結合圖中所給信息解答下列問題:(1)本次被調查的學員共有人;在被調查者中參加“3科”課外輔導的有人.(2)將條形統(tǒng)計圖補充完整;(3)已知鄭州市中小學約有24萬人,那么請你估計一下參與輔導科目不多于2科的學生大約有多少人.25.(10分)有一個二次函數(shù)滿足以下條件:①函數(shù)圖象與x軸的交點坐標分別為A(1,0),B(x1,y1)(點B在點A的右側);②對稱軸是x=3;③該函數(shù)有最小值是﹣1.(1)請根據(jù)以上信息求出二次函數(shù)表達式;(1)將該函數(shù)圖象x>x1的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.26.(12分)已知關于x的一元二次方程x2﹣6x+(2m+1)=0有實數(shù)根.求m的取值范圍;如果方程的兩個實數(shù)根為x1,x2,且2x1x2+x1+x2≥20,求m的取值范圍.27.(12分)先化簡,再求值:,其中

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

如圖(見解析),連接BD、CD,根據(jù)圓周角定理可得,再根據(jù)相似三角形的判定定理可得,然后由相似三角形的性質可得,同理可得;又根據(jù)圓周角定理可得,再根據(jù)正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質、正切函數(shù)值等知識點,通過作輔助線,結合圓周角定理得出相似三角形是解題關鍵.2、D【解析】

由表易得x+(10-x)=10,所以總人數(shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團總人數(shù)為30人,∴合唱團成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.3、A【解析】

根據(jù)眾數(shù)、中位數(shù)的定義分別進行解答即可.【詳解】由表知數(shù)據(jù)5出現(xiàn)了6次,次數(shù)最多,所以眾數(shù)為5;因為共有20個數(shù)據(jù),所以中位數(shù)為第10、11個數(shù)據(jù)的平均數(shù),即中位數(shù)為=6,故選A.【點睛】本題考查了眾數(shù)和中位數(shù)的定義.用到的知識點:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).4、D【解析】試題分析:利用平方差公式及完全平方公式的結構特征判斷即可.試題解析:x2-6x+9=(x-3)2.故選D.考點:2.因式分解-運用公式法;2.因式分解-提公因式法.5、B【解析】

首先過點A作AM⊥BC,根據(jù)三角形面積求出AM的長,得出直線BC與DE的距離,進而得出直線與圓的位置關系.【詳解】解:過點A作AM⊥BC于點M,交DE于點N,∴AM×BC=AC×AB,∴AM===2.1.∵D、E分別是AC、AB的中點,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.∵以DE為直徑的圓半徑為1.25,∴r=1.25>1.2,∴以DE為直徑的圓與BC的位置關系是:相交.故選B.【點睛】本題考查了直線和圓的位置關系,利用中位線定理得出BC到圓心的距離與半徑的大小關系是解題的關鍵.6、B【解析】

利用平行線間的距離相等,可知點到、、的距離相等,然后可作出判斷.【詳解】解:如圖,過點作于,于,于.圖1,(夾在平行線間的距離相等).如圖:過點作于,作于E,作于.由題意可知:,,,∴,∴圖中的點是三角形三個內(nèi)角的平分線的交點,點是的內(nèi)心,故選B.【點睛】本題考查平行線間的距離,角平分線定理,三角形的內(nèi)心,解題的關鍵是判斷出.7、B【解析】

先根據(jù)翻折變換的性質得到△DEF≌△AEF,再根據(jù)等腰三角形的性質及三角形外角的性質可得到∠BED=CDF,設CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質、等腰直角三角形的性質、勾股定理、三角形外角的性質,涉及面較廣,但難易適中.8、B【解析】

由圖可知:上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),上邊的數(shù)為連續(xù)的奇數(shù),左邊的數(shù)為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,∴b=26=1.∵上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),∴a=11+1=2.故選B.【點睛】本題考查了數(shù)字變化規(guī)律,觀察出上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù)是解題的關鍵.9、D【解析】設分配x名工人生產(chǎn)螺栓,則(27-x)人生產(chǎn)螺母,根據(jù)一個螺栓要配兩個螺母可得方程2×22x=16(27-x),故選D.10、C【解析】分析:根據(jù)根與系數(shù)的關系可得出α+β=-、αβ=-3,將其代入=中即可求出結論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數(shù)的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.11、A【解析】解:∵把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故選A.12、C【解析】

利用打折是在標價的基礎之上,利潤是在進價的基礎上,進而得出等式求出即可.【詳解】解:設原價為x元,根據(jù)題意可得:80%x=140+20,解得:x=1.所以該商品的原價為1元;故選:C.【點睛】此題主要考查了一元一次方程的應用,根據(jù)題意列出方程是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≥3y=1【解析】根據(jù)二次根式有意義的條件求解即可.即被開方數(shù)是非負數(shù),結果是x≥3,y=1.14、1<m≤2【解析】

首先根據(jù)不等式恰好有個整數(shù)解求出不等式組的解集為,再確定.【詳解】不等式組有個整數(shù)解,其整數(shù)解有、這個,.故答案為:.【點睛】此題主要考查了解不等式組,關鍵是正確理解解集的規(guī)律:同大取大,同小取小,大小小大中間找,大大小小找不到.15、【解析】試題解析:∵四邊形ABCD是矩形,∵AE⊥BD,∴△ABE∽△ADB,∵E是BC的中點,過F作FG⊥BC于G,故答案為16、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉化DN,MN的值,從而找出其最小值求解.解答:解:如圖,連接BM,∵點B和點D關于直線AC對稱,∴NB=ND,則BM就是DN+MN的最小值,∵正方形ABCD的邊長是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故答案為1.點評:考查正方形的性質和軸對稱及勾股定理等知識的綜合應用.17、【解析】摸三次有可能有:紅紅紅、紅紅藍、紅藍紅、紅藍藍、藍紅紅、藍紅藍、藍藍紅、藍藍藍共計8種可能,其中僅有一個紅壞的有:紅藍藍、藍紅藍、藍藍紅共計3種,所以“僅有一次摸到紅球”的概率是.故答案是:.18、(Ⅰ)(Ⅱ)如圖,取格點、,連接與交于點,連接與交于點.【解析】

(Ⅰ)根據(jù)勾股定理進行計算即可.(Ⅱ)根據(jù)菱形的每一條對角線平分每一組對角,構造邊長為1的菱形ABEC,連接AE交BC于M,即可得出是的角平分線,再取點F使AF=1,則根據(jù)等腰三角形的性質得出點C與F關于AM對稱,連接DF交AM于點P,此時的值最?。驹斀狻浚á瘢└鶕?jù)勾股定理得AC=;故答案為:1.(Ⅱ)如圖,如圖,取格點、,連接與交于點,連接與交于點,則點P即為所求.說明:構造邊長為1的菱形ABEC,連接AE交BC于M,則AM即為所求的的角平分線,在AB上取點F,使AF=AC=1,則AM垂直平分CF,點C與F關于AM對稱,連接DF交AM于點P,則點P即為所求.【點睛】本題考查作圖-應用與設計,涉及勾股定理、菱形的判定和性質、幾何變換軸對稱—最短距離等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用數(shù)形結合的思想解決問題.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)反比例函數(shù)的解析式為y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).【解析】試題分析:(1)把點B(3,﹣1)帶入反比例函數(shù)中,即可求得k的值;(2)聯(lián)立直線和反比例函數(shù)的解析式構成方程組,化簡為一個一元二次方程,解方程即可得到點D坐標,觀察圖象可得相應x的取值范圍;(3)把A(1,a)是反比例函數(shù)的解析式,求得a的值,可得點A坐標,用待定系數(shù)法求得直線AB的解析式,令y=0,解得x的值,即可求得點P的坐標.試題解析:(1)∵B(3,﹣1)在反比例函數(shù)的圖象上,∴-1=,∴m=-3,∴反比例函數(shù)的解析式為;(2),∴=,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,當x=-2時,y=,∴D(-2,);y1>y2時x的取值范圍是-2<x<0或x>;(3)∵A(1,a)是反比例函數(shù)的圖象上一點,∴a=-3,∴A(1,-3),設直線AB為y=kx+b,,∴,∴直線AB為y=x-4,令y=0,則x=4,∴P(4,0)20、見詳解【解析】

根據(jù)角平分線的定義可得∠ABD=∠CBD,然后利用“邊角邊”證明△ABD和△CBD全等,根據(jù)全等三角形對應角相等可得∠ADB=∠CDB,然后根據(jù)角平分線上的點到角的兩邊的距離相等證明即可.【詳解】證明:∵BD為∠ABC的平分線,

∴∠ABD=∠CBD,

在△ABD和△CBD中,∴△ABD≌△CBD(SAS),

∴∠ADB=∠CDB,

∵點P在BD上,PM⊥AD,PN⊥CD,

∴PM=PN.【點睛】本題考查了角平分線上的點到角的兩邊的距離相等的性質,全等三角形的判定與性質,確定出全等三角形并得到∠ADB=∠CDB是解題的關鍵.21、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標,進而求得D的坐標,即可求得DH的長度,令y=0,求得A,B的坐標,然后證得△ACO∽△EAH,根據(jù)對應邊成比例求得EH的長,進繼而求得DE的長;(2)找點C關于DE的對稱點N(4,),找點C關于AE的對稱點G(-2,-),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點的坐標求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點M作y軸的平行線交FH于點Q,設點M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點C關于DE的對稱點N(4,),找點C關于AE的對稱點G(﹣2,﹣),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點M作y軸的平行線交FH于點Q,設點M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對稱軸為:直線m=<2,開口向下,∴m=時,△MPF面積有最大值:;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,1)當KF′=KF″時,如圖3,點K在F′F″的垂直平分線上,所以K與B重合,坐標為(3,0),∴OK=3;2)當F′F″=F′K時,如圖4,∴F′F″=F′K=4,∵FP的解析式為:y=x﹣,∴在平移過程中,F(xiàn)′K與x軸的夾角為30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)當F″F′=F″K時,如圖5,∵在平移過程中,F(xiàn)″F′始終與x軸夾角為60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,綜上所述:OK=3,4﹣1,4+1或者1.點睛:本題是二次函數(shù)的綜合題,考查了二次函數(shù)的交點和待定系數(shù)法求二次函數(shù)的解析式以及最值問題,考查了三角形相似的判定與性質,等邊三角形的判定與性質,等腰三角形的性質等,分類討論的思想是解題的關鍵.22、(1)P(抽到數(shù)字為2)=;(2)不公平,理由見解析.【解析】試題分析:(1)根據(jù)概率的定義列式即可;(2)畫出樹狀圖,然后根據(jù)概率的意義分別求出甲、乙獲勝的概率,從而得解.試題解析:(1)P=;(2)由題意畫出樹狀圖如下:一共有6種情況,甲獲勝的情況有4種,P=,乙獲勝的情況有2種,P=,所以,這樣的游戲規(guī)則對甲乙雙方不公平.考點:游戲公平性;列表法與樹狀圖法.23、(1)A類圖書的標價為27元,B類圖書的標價為18元;(2)當A類圖書每本降價少于3元時,A類圖書購進800本,B類圖書購進200本,利潤最大;當A類圖書每本降價大于等于3元,小于5元時,A類圖書購進600本,B類圖書購進400本,利潤最大.【解析】

(1)先設B類圖書的標價為x元,則由題意可知A類圖書的標價為1.5x元,然后根據(jù)題意列出方程,求解即可.(2)先設購進A類圖書t本,總利潤為w元,則購進B類圖書為(1000-t)本,根據(jù)題目中所給的信息列出不等式組,求出t的取值范圍,然后根據(jù)總利潤w=總售價-總成本,求出最佳的進貨方案.【詳解】解:(1)設B類圖書的標價為x元,則A類圖書的標價為1.5x元,根據(jù)題意可得,化簡得:540-10x=360,解得:x=18,經(jīng)檢驗:x=18是原分式方程的解,且符合題意,則A類圖書的標價為:1.5x=1.5×18=27(元),答:A類圖書的標價為27元,B類圖書的標價為18元;(2)設購進A類圖書t本,總利潤為w元,A類圖書的標價為(27-a)元(0<a<5),由題意得,,解得:600≤t≤800,則總利潤w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故當0<a<3時,3-a>0,t=800時,總利潤最大,且大于6000元;當a=3時,3-a=0,無論t值如何變化,總利潤均為6000元;當3<a<5時,3-a<0,t=600時,總利潤最大,且小于6000元;答:當A類圖書每本降價少于3元時,A類圖書購進800本,B類圖書購進200本時,利潤最大;當A類圖書每本降價大于等于3元,小于5元時,A類圖書購進600本,B類圖書購進400本時,利潤最大.【點睛】本題考查了一次函數(shù)的應用,分式方程的應用、一元一次不等式組的應用、一次函數(shù)的最值問題,解答本題的關鍵在于讀懂題意,設出未知數(shù),找出合適的等量關系,列出方程和不等式組求解.24、(1)50,10;(2)見解析.(3)16.8萬【解析】

(1)結合條形統(tǒng)計圖和扇形統(tǒng)計圖中的參加“3科”課外輔導人數(shù)及百分比,求得總人數(shù)為50人;再由總人數(shù)減去參加“1科”,“2科”,“4科”課外輔導人數(shù)即可求出答案.(2)由(1)知在被調查者中參加“3科”課外輔導的有10人,由扇形統(tǒng)計圖可知參加“4科”課外輔導人數(shù)占比為10%,故參加“4科”課外輔導人數(shù)的有5人.(3)因為參加“1科”和“2科”課外輔導人數(shù)占比為,所以全市參與輔導科目不多于2科的人數(shù)為24×=16.8(萬).【詳解】解:(1)本次被調查的學員共有:15÷30%=50(人),在被調查者中參加“3科”課外輔導的有:50﹣15﹣20﹣50×10%=10(人),故答案為50,10;(2)由(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論