2021-2022學年四川廣安市重點中學中考數(shù)學五模試卷含解析_第1頁
2021-2022學年四川廣安市重點中學中考數(shù)學五模試卷含解析_第2頁
2021-2022學年四川廣安市重點中學中考數(shù)學五模試卷含解析_第3頁
2021-2022學年四川廣安市重點中學中考數(shù)學五模試卷含解析_第4頁
2021-2022學年四川廣安市重點中學中考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2021-2022學年四川廣安市重點中學中考數(shù)學五模試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,AC=BC,點D在BC的延長線上,AE∥BD,點ED在AC同側(cè),若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°2.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質(zhì)地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球3.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm4.已知在四邊形ABCD中,AD//BC,對角線AC、BD交于點O,且AC=BD,下列四個命題中真命題是()A.若AB=CD,則四邊形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;C.若,則四邊形ABCD一定是矩形;D.若AC⊥BD且AO=OD,則四邊形ABCD一定是正方形.5.一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時間的函數(shù)圖形如圖所示,下列說法正確的有()①快車追上慢車需6小時;②慢車比快車早出發(fā)2小時;③快車速度為46km/h;④慢車速度為46km/h;⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時A.2個 B.3個 C.4個 D.5個6.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出1個球,是黃球的概率為()A. B. C. D.7.小明家1至6月份的用水量統(tǒng)計如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯誤的是().A.眾數(shù)是6噸 B.平均數(shù)是5噸 C.中位數(shù)是5噸 D.方差是8.下列說法正確的是()A.擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,5點朝上是必然事件B.明天下雪的概率為,表示明天有半天都在下雪C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定D.了解一批充電寶的使用壽命,適合用普查的方式9.下列方程中,沒有實數(shù)根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=010.在武漢市舉辦的“讀好書、講禮儀”活動中,某學校積極行動,各班圖書角的新書、好書不斷增多,除學校購買外,還有師生捐獻的圖書.下面是七年級(1)班全體同學捐獻圖書的情況統(tǒng)計圖,根據(jù)圖中信息,該班平均每人捐書的冊數(shù)是()A.3B.3.2C.4D.4.511.如圖,已知數(shù)軸上的點A、B表示的實數(shù)分別為a,b,那么下列等式成立的是()A. B.C. D.12.如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為()A.13 B.15 C.17 D.19二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一次函數(shù)y=kx+3的圖象與坐標軸的兩個交點之間的距離為5,則k的值為______.14.如圖,矩形AOCB的兩邊OC、OA分別位于x軸、y軸上,點B的坐標為B(),D是AB邊上的一點.將△ADO沿直線OD翻折,使A點恰好落在對角線OB上的點E處,若點E在一反比例函數(shù)的圖像上,那么k的值是_______15.一天晚上,小偉幫助媽媽清洗兩個只有顏色不同的有蓋茶杯,突然停電了,小偉只好把杯蓋和茶杯隨機地搭配在一起,則顏色搭配正確的概率是_____.16.分解因式:a3-a=17.已知實數(shù)a、b、c滿足+|10﹣2c|=0,則代數(shù)式ab+bc的值為__.18.一個不透明的口袋中有2個紅球,1個黃球,1個白球,每個球除顏色不同外其余均相同.小溪同學從口袋中隨機取出兩個小球,則小溪同學取出的是一個紅球、一個白球的概率為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統(tǒng)計圖表.

請根據(jù)所給信息,解答以下問題:

表中___;____請計算扇形統(tǒng)計圖中B組對應扇形的圓心角的度數(shù);

已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率.20.(6分)化簡:(x+7)(x-6)-(x-2)(x+1)21.(6分)我校對全校學生進傳統(tǒng)文化禮儀知識測試,為了了解測試結(jié)果,隨機抽取部分學生的成績進行分析,現(xiàn)將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:(1)本次隨機抽取的人數(shù)是人,并將以上兩幅統(tǒng)計圖補充完整;(2)若“一般”和“優(yōu)秀”均被視為達標成績,則我校被抽取的學生中有人達標;(3)若我校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?22.(8分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點D為邊BC上的動點,連接AD以AD為直徑作⊙O交邊AB、AC分別于點E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請說明理由.23.(8分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形?若存在,試求出點Q的坐標;若不存在,請說明理由.24.(10分)綜合與探究如圖,拋物線y=﹣與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,直線l經(jīng)過B,C兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉(zhuǎn)90°得到線段MD,連接CD,BD.設點M運動的時間為t(t>0),請解答下列問題:(1)求點A的坐標與直線l的表達式;(2)①直接寫出點D的坐標(用含t的式子表示),并求點D落在直線l上時的t的值;②求點M運動的過程中線段CD長度的最小值;(3)在點M運動的過程中,在直線l上是否存在點P,使得△BDP是等邊三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.25.(10分)計算:﹣|﹣2|+()﹣1﹣2cos45°26.(12分)某中學為了考察九年級學生的中考體育測試成績(滿分30分),隨機抽查了40名學生的成績(單位:分),得到如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)圖中m的值為_______________.(2)求這40個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù):(3)根據(jù)樣本數(shù)據(jù),估計該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生。27.(12分)如圖1,圖2…、圖m是邊長均大于2的三角形、四邊形、…、凸n邊形.分別以它們的各頂點為圓心,以1為半徑畫弧與兩鄰邊相交,得到3條弧、4條弧…、n條?。?1)圖1中3條弧的弧長的和為,圖2中4條弧的弧長的和為;(2)求圖m中n條弧的弧長的和(用n表示).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB,再利用平行線的性質(zhì)解答即可.【詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【點睛】此題考查等腰三角形的性質(zhì),關(guān)鍵是根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB.2、A【解析】

根據(jù)必然事件的概念:在一定條件下,必然發(fā)生的事件叫做必然事件分析判斷即可.【詳解】A、是必然事件;B、是隨機事件,選項錯誤;C、是隨機事件,選項錯誤;D、是隨機事件,選項錯誤.故選A.3、A【解析】

過點P作PD⊥OB于D,根據(jù)角平分線上的點到角的兩邊距離相等可得PC=PD,再根據(jù)垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【點睛】考查了角平分線上的點到角的兩邊距離相等的性質(zhì),垂線段最短的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.4、C【解析】A、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此A中命題不一定成立;B、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此B中命題不一定成立;C、因為由結(jié)合AO+CO=AC=BD=BO+OD可證得AO=CO,BO=DO,由此即可證得此時四邊形ABCD是矩形,因此C中命題一定成立;D、因為滿足本選項條件的四邊形ABCD有可能是等腰梯形,由此D中命題不一定成立.故選C.5、B【解析】

根據(jù)圖形給出的信息求出兩車的出發(fā)時間,速度等即可解答.【詳解】解:①兩車在276km處相遇,此時快車行駛了4個小時,故錯誤.②慢車0時出發(fā),快車2時出發(fā),故正確.③快車4個小時走了276km,可求出速度為69km/h,錯誤.④慢車6個小時走了276km,可求出速度為46km/h,正確.⑤慢車走了18個小時,速度為46km/h,可得A,B距離為828km,正確.⑥快車2時出發(fā),14時到達,用了12小時,錯誤.故答案選B.【點睛】本題考查了看圖手機信息的能力,注意快車并非0時刻出發(fā)是解題關(guān)鍵.6、A【解析】

讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出1個球是黃球的概率是.

故選:A.【點睛】本題考查概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.7、C【解析】試題分析:根據(jù)眾數(shù)、平均數(shù)、中位數(shù)、方差:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].數(shù)據(jù):3,4,5,6,6,6,中位數(shù)是5.5,故選C考點:1、方差;2、平均數(shù);3、中位數(shù);4、眾數(shù)8、C【解析】

根據(jù)必然事件、不可能事件、隨機事件的概念、方差和普查的概念判斷即可.【詳解】A.擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,5點朝上是隨機事件,錯誤;B.“明天下雪的概率為”,表示明天有可能下雪,錯誤;C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,正確;D.了解一批充電寶的使用壽命,適合用抽查的方式,錯誤;故選:C【點睛】考查方差,全面調(diào)查與抽樣調(diào)查,隨機事件,概率的意義,比較基礎,難度不大.9、D【解析】

分別計算各方程的根的判別式的值,然后根據(jù)判別式的意義判定方程根的情況即可.【詳解】A、△=(﹣2)2﹣4×1×0=4>0,方程有兩個不相等的實數(shù)根,所以A選項錯誤;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有兩個不相等的實數(shù)根,所以B選項錯誤;C、△=(﹣2)2﹣4×1×1=0,方程有兩個相等的實數(shù)根,所以C選項錯誤;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程沒有實數(shù)根,所以D選項正確.故選D.10、B【解析】七年級(1)班捐獻圖書的同學人數(shù)為9÷18%=50人,捐獻4冊的人數(shù)為50×30%=15人,捐獻3冊的人數(shù)為50-6-9-15-8=12人,所以該班平均每人捐書的冊數(shù)為(6+9×2+12×3+15×4+8×5)÷50=3.2冊,故選B.11、B【解析】

根據(jù)圖示,可得:b<0<a,|b|>|a|,據(jù)此判斷即可.【詳解】∵b<0<a,|b|>|a|,

∴a+b<0,

∴|a+b|=-a-b.

故選B.【點睛】此題主要考查了實數(shù)與數(shù)軸的特征和應用,以及絕對值的含義和求法,要熟練掌握.12、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

首先求出一次函數(shù)y=kx+3與y軸的交點坐標;由于函數(shù)與x軸的交點的縱坐標是0,可以設橫坐標是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函數(shù)的解析式y(tǒng)=kx+3,從而求出k的值.【詳解】在y=kx+3中令x=0,得y=3,則函數(shù)與y軸的交點坐標是:(0,3);設函數(shù)與x軸的交點坐標是(a,0),根據(jù)勾股定理得到a2+32=25,解得a=±4;當a=4時,把(4,0)代入y=kx+3,得k=;當a=-4時,把(-4,0)代入y=kx+3,得k=;故k的值為或【點睛】考點:本體考查的是根據(jù)待定系數(shù)法求一次函數(shù)解析式解決本題的關(guān)鍵是求出函數(shù)與y軸的交點坐標,然后根據(jù)勾股定理求得函數(shù)與x軸的交點坐標,進而求出k的值.14、-12【解析】過E點作EF⊥OC于F,如圖所示:

由條件可知:OE=OA=5,,所以EF=3,OF=4,

則E點坐標為(-4,3)

設反比例函數(shù)的解析式是y=,則有k=-4×3=-12.故答案是:-12.15、【解析】分析:根據(jù)概率的計算公式.顏色搭配總共有4種可能,分別列出搭配正確和搭配錯誤的可能,進而求出各自的概率即可.詳解:用A和a分別表示第一個有蓋茶杯的杯蓋和茶杯;用B和b分別表示第二個有蓋茶杯的杯蓋和茶杯、經(jīng)過搭配所能產(chǎn)生的結(jié)果如下:Aa、Ab、Ba、Bb.所以顏色搭配正確的概率是.故答案為:.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.16、【解析】a3-a=a(a2-1)=17、-1【解析】試題分析:根據(jù)非負數(shù)的性質(zhì)可得:,解得:,則ab+bc=(-11)×6+6×5=-66+30=-1.18、【解析】

先畫樹狀圖求出所有等可能的結(jié)果數(shù),再找出從口袋中隨機摸出2個球,摸到的兩個球是一紅一白的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:根據(jù)題意畫樹狀圖如下:共有12種等可能的結(jié)果數(shù),其中從口袋中隨機摸出2個球,摸到的一個紅球、一個白球的結(jié)果數(shù)為4,所以從口袋中隨機摸出2個球,則摸到的兩個球是一白一黃的概率為.故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)0.3,45;(2);(3)【解析】

(1)根據(jù)頻數(shù)的和為樣本容量,頻率的和為1,可直接求解;(2)根據(jù)頻率可得到百分比,乘以360°即可;(3)列出相應的可能性表格,找到所發(fā)生的所有可能和符合條件的可能求概率即可.【詳解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列關(guān)系表格為:由表格可知,滿足題意的概率為:.考點:1、頻數(shù)分布表,2、扇形統(tǒng)計圖,3、概率20、2x-40.【解析】

原式利用多項式乘以多項式法則計算,去括號合并即可.【詳解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.21、(1)120,補圖見解析;(2)96;(3)960人.【解析】

(1)由“不合格”的人數(shù)除以占的百分比求出總?cè)藬?shù),確定出“優(yōu)秀”的人數(shù),以及一般的百分比,補全統(tǒng)計圖即可;

(2)求出“一般”與“優(yōu)秀”占的百分比,乘以總?cè)藬?shù)即可得到結(jié)果;

(3)求出達標占的百分比,乘以1200即可得到結(jié)果.【詳解】(1)根據(jù)題意得:24÷20%=120(人),則“優(yōu)秀”人數(shù)為120﹣(24+36)=60(人),“一般”占的百分比為×100%=30%,補全統(tǒng)計圖,如圖所示:(2)根據(jù)題意得:36+60=96(人),則達標的人數(shù)為96人;(3)根據(jù)題意得:×1200=960(人),則全校達標的學生有960人.故答案為(1)120;(2)96人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解析】

(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問題;(2)如圖2中,作AH⊥BC于H.當直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當AD與AH重合時,AD的值最短,此時EF的值也最短;(3)如圖3中,將△ADC繞點A順時針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設BE=CD=x.證明EC=AC,構(gòu)建二次函數(shù)求出EC的最小值即可解決問題.【詳解】解:(1)如圖1中,作△ABC的外接圓,連接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圓的R為1.(2)如圖2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC?sin45°=8×=8,∵∠BAC=10°,∴當直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當AD與AH重合時,AD的值最短,此時EF的值也最短,如圖2﹣1中,當AD⊥BC時,作OH⊥EF于H,連接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF?cos30°=4?=1,∴EF=2EH=2,∴EF的最小值為2.(3)如圖3中,將△ADC繞點A順時針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=AC,∠AEC=∠ACE=45°,∴EC的值最小時,AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=x,EH=x,∵CD+BC=2,CD=x,∴BC=2﹣x∴EC2=EH2+CH2=(x)2+=x2﹣2x+432,∵a=1>0,∴當x=﹣=1時,EC的長最小,此時EC=18,∴AC=EC=9,∴AC的最小值為9.【點睛】本題屬于圓綜合題,考查了圓周角定理,勾股定理,解直角三角形,二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,學會構(gòu)建二次函數(shù)解決最值問題,屬于中考壓軸題.23、(1)y=﹣x2+2x+3;(2)見解析.【解析】

(1)將B(3,0),C(0,3)代入拋物線y=ax2+2x+c,可以求得拋物線的解析式;(2)拋物線的對稱軸為直線x=1,設點Q的坐標為(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC為斜邊,AQ為斜邊,CQ時斜邊三種情況求解即可.【詳解】解:(1)∵拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3),∴,得,∴該拋物線的解析式為y=﹣x2+2x+3;(2)在拋物線的對稱軸上存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形,理由:∵拋物線y=﹣x2+2x+3=﹣(x﹣1)2+4,點B(3,0),點C(0,3),∴拋物線的對稱軸為直線x=1,∴點A的坐標為(﹣1,0),設點Q的坐標為(1,t),則AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,當AC為斜邊時,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴點Q的坐標為(1,1)或(1,2),當AQ為斜邊時,4+t2=10+t2﹣6t+10,解得,t=,∴點Q的坐標為(1,),當CQ時斜邊時,t2﹣6t+10=4+t2+10,解得,t=,∴點Q的坐標為(1,﹣),由上可得,當點Q的坐標是(1,1)、(1,2)、(1,)或(1,﹣)時,使得以A、C、Q為頂點的三角形為直角三角形.【點睛】本題考查了待定系數(shù)法求函數(shù)解析式,二次函數(shù)的圖像與性質(zhì),勾股定理及分類討論的數(shù)學思想,熟練掌握待定系數(shù)法是解(1)的關(guān)鍵,分三種情況討論是解(2)的關(guān)鍵.24、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值為;(3)P(2,﹣),理由見解析.【解析】

(1)當y=0時,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系數(shù)法可求直線l的表達式;(2)分當點M在AO上運動時,當點M在OB上運動時,進行討論可求D點坐標,將D點坐標代入直線解析式求得t的值;線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,根據(jù)勾股定理可求點M運動的過程中線段CD長度的最小值;(3)分當點M在AO上運動時,即0<t<3時,當點M在OB上運動時,即3≤t≤4時,進行討論可求P點坐標.【詳解】(1)當y=0時,﹣=0,解得x1=1,x2=﹣3,∵點A在點B的左側(cè),∴A(﹣3,0),B(1,0),由解析式得C(0,),設直線l的表達式為y=kx+b,將B,C兩點坐標代入得b=mk﹣,故直線l的表達式為y=﹣x+;(2)當點M在AO上運動時,如圖:由題意可知AM=t,OM=3﹣t,MC⊥MD,過點D作x軸的垂線垂足為N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO與△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,當點M在OB上運動時,如圖,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).綜上得,D(t﹣3+,t﹣3).將D點坐標代入直線解析式得t=6﹣2,線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,∵M在AB上運動,∴當CM⊥AB時,CM最短,CD最短,即CM=CO=,根據(jù)勾股定理得CD最??;(3)當點M在AO上運動時,如圖,即0<t<3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論