視覺(jué)信息處理圖像成分組合和分割的神經(jīng)機(jī)制_第1頁(yè)
視覺(jué)信息處理圖像成分組合和分割的神經(jīng)機(jī)制_第2頁(yè)
視覺(jué)信息處理圖像成分組合和分割的神經(jīng)機(jī)制_第3頁(yè)
視覺(jué)信息處理圖像成分組合和分割的神經(jīng)機(jī)制_第4頁(yè)
視覺(jué)信息處理圖像成分組合和分割的神經(jīng)機(jī)制_第5頁(yè)
已閱讀5頁(yè),還剩45頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

StateKeyLaboratoryofCognitiveNeuroscienceandLearning ernInstituteforBrainResearchBeijingNormal 年月“Thesensationsarousedbylightinthenervousmechanismofvisionenable existence,formandpositionexternalobjects.Theseideascalledvisualperceptions.”

(1821–1894)

TreatiseonPhysiologicalOptics, 2①Visualperceptionisdependentonstimulus②Visualperceptionisdependentonselective③Visualperceptionisdependentonpast③VisualperceptionisdependentonpastWangetal.DynamicandadaptivevisualVisualperceptionisdependentonstimulusandbehavioralcontextandshapedbypastexperience.Whataretheneuralmechanismsunderlyingsuchflexibleperceptualcapabilities?e

cortex,V1)

視網(wǎng)膜神經(jīng)節(jié)細(xì)胞(retinalganglioncell)的感受野(receptivefield)特性452452DoGDoGOptimalOrientationOptimalOrientationMeanMeanresponse(0

-45

OrientationtuningofV1neurons(Hubel&Wiesel,FormingasimplecellinV1fromLGNcells(Hubel&Wiesel,=X=Gabor HierarchicaltheoryinvisualHubel&Wiesel,Max(1880- andsegmentationinvisual B TheGestaltlawofContourNeuralcircuitryintheprimaryvisualcortex

contourintegrationContextualinfluencesonneuronalresponsesin Firingrate(Firingrate(

Li&Li,VisionResearchContourintegrationinWhichofWhichofthetwopatternscontainsaContourintegrationinV1:correlationwithperceptualLietal.,NeuronHitHit FalsealarmrateSignaldetectionContourintegrationinV1:choice NumberofcollinearLietal.,NeuronContourintegrationinV1:attentionalLietal.,NeuronMorethanhard-wiredprocessingwithgainInfluencesoftop-downanticipationonV1Samplecue:380 Detection:48-191McManus,Li&Gilbert,PNASInfluencesoftop-downanticipationonV1McManus,Li&Gilbert,PNASPerceptualContour97531CentralContour97531Central97531es/s)

LearningLearningsticityin Lietal.,NeuronLearningLearningsticityinAnesthetizedAnesthetized0 Lietal.,Neuron ctionsbetweenlowerandhighervisual ctionsbetweenlowerandhighervisualV1 UtahChenetal.,NeuronContour-inducedresponsesinV1and IncrementalcontourintegrationbetweenV1andContourintegrationstartsinitiallyinThefastfeedforwardprocessisfollowedbyadelayedprocessthatengagesV1neuronsonthecontourandonthebackground.AfterV1isengagedthecontoursignalsinbothareascontinuetobuildupandrapidlyreachthe IncrementalcontourintegrationbetweenV1andGrangercausalityFortwosimultaneouslymeasuredtimeseriesXandY,XcanbecausaltoYifwecanpredictYbypastknowledgeof

-300to9595to950Amodelwithtop-downgainPiech,Li,Reeke&Gilbert,PNASAmodelwithtop-downgainPiech,Li,Reeke&Gilbert,PNASAmodelwithtop-downgainAcomparisonbetweensimulationandrealPiech,Li,Reeke&Gilbert,PNASAmodelwithtop-downgainPiech,Li,Reeke&Gilbert,PNASSurfacesegmentationbyvisualcorticalPoortetal.,NeuronVisualinformationprocessinginthebrainisdynamicallymodifiedbystimulusandbehavioralcontextandshapedbytraining.Parsingvisualimagesrequiresinctionsamongcorticalneuronsacrossmultipleareas.Fastfeedforwardinputscreateacoarsetemteinhighervisualcortex,whichgatestheprocessinginearlycorticalareasatfinerscalesthroughfeedbackmodulations.ThiscountercurrentprocessingschemeisinaccordancewiththeGestalttheory,whichpositsthatinterpretationsoflocalimagecomponentsareconstrainedbytheglobalorganizationofvisualscenes.Repeatedlyperformingthesameperceptualtask,andtherefore,repetitivelyinvokingtop-downinfluencescanpotentiateadaptivechangesinthevisualcortex,allowingforamoreefficientreadoutoftask-relevantinformation.Chen,M.,Yan,Y.,Gong,X.,Gilbert,CharlesD.,Liang,H.,andLi,W.(2014).Incrementalintegrationofglobalcontoursthroughinterybetweenvisualcorticalareas.Neuron82,Gilbert,C.D.,andLi,W.(2013).Top-downinfluencesonvisualprocessing.NatureReviewsNeuroscience14,350-363.Li,W.,Piech,V.,andGilbert,C.D.(2006).Contoursaliencyinprimaryvisualcortex.Neuron50,951-962.Li,W.,Piech,V.,andGilbert,C.D.(2008).Learningtolinkvisualcontours.Neuron57,442-McManus,J.N.J.,Li,W.,andGilbert,C.D.(2011).Adaptiveshapeprocessinginprimaryvisualcortex.Proc.Natl.Acad.Sci.U.S.A.108,9739-9746.Pi?ch,V.,Li,W.,Reeke,G.N.,andGilbert,C.D.(2013).Networkmodeloftop-downinfluencesonlocalgainandcontextualinctionsinvisualcortex.Proc.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論