版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE1文獻(xiàn)名稱(外文)CENTRIFUGALPUMPSINTHECHEMICALINDUSTRYAbstract:Acentrifugalpumpconvertstheinputpowertokineticenergyintheliquidbyacceleratingtheliquidbyarevolvingdevice-animpeller.Themostcommontypeisthevolutepump.Fluidentersthepumpthroughtheeyeoftheimpellerwhichrotatesathighspeed.Thefluidisacceleratedradiallyoutwardfromthepumpchasing.Avacuumiscreatedattheimpellerseyethatcontinuouslydrawsmorefluidintothepump.Thisarticlestressesonaseriesofcentrifugalpumps,F(xiàn)romabriefintroductiontotheprinciples.Keywords:centrifugalpump,Introduction,Workingprinciple,Cavitation,MechanismofCavitation,SolutionandRemedies1.IntroductionPump,deviceusedtoraise,transfer,orcompressliquidsandgases.Fourgeneralclassesofpumpsforliquidsaredescribedbelow.Inallofthem,stepsaretakentopreventcavitation(theformationofavacuum),whichwouldreducetheflowanddamagethestructureofthepump.Pumpsusedforgasesandvaporsareusuallyknownascompressors.Thestudyoffluidsinmotioniscalledfluiddynamics.Waterpump,deviceformovingwaterfromonelocationtoanother,usingtubesorothermachinery.Waterpumpsoperateunderpressuresrangingfromafractionofapoundtomorethan10,000poundspersquareinch.Everydayexamplesofwaterpumpsrangefromsmallelectricpumpsthatcirculateandaeratewaterinaquariumsandfountainstosumppumpsthatremovewaterfrombeneaththefoundationsofhomes.Onetypeofmodernpumpsusedtomovewateristhecentrifugalpump.Earlyversionofthecentrifugalpump,thescrewpump,consistsofacorkscrew-shapedmechanisminapipethat,whenrotated,pullswaterupward.Screwpumpsareoftenusedinwaste-watertreatmentplantsbecausetheycanmovelargeamountsofwaterwithoutbecomingcloggedwithdebris.IntheancientMiddleEasttheneedforirrigationoffarmlandwasastronginducementtodevelopawaterpump.Earlypumpsinthisregionweresimpledevicesforliftingbucketsofwaterfromasourcetoacontaineroratrench.GreekmathematicianandinventorArchimedesisthoughttohavedevisedthefirstscrewpumpinthethirdcenturyBC.LaterGreekinventorCtesibiusdevelopthefirstliftpump.Duringthelate17thandearly18thCenturiesAD,BritishengineerThomasSavery,FrenchphysicistDenisPapin,AndBritishblacksmithandinventorThomasNewcomencontributedtothedevelopmentofawaterpumpthatusedsteamtopowerthepump’piston.Thesteam-poweredwaterpump’sfirstwideusewasinpumpingwateroutofmines.Modern-dayexamplesofcentrifugalpumpsarethoseusedattheGrandCouleeDamontheColumbiaRiver.Thispumpsystemhasthepotentialtoirrigateoveronemillionacresofland.Alsoknownasrotarypumps,centrifugalpumpshavearotatingimpeller,alsoknownasablade,thatisimmersedintheliquid.Liquidentersthepumpneartheaxisoftheimpeller,andtherotatingimpellersweepstheliquidouttowardtheendsoftheimpellerbladesathighpressure.Theimpelleralsogivestheliquidarelativelyhighvelocitythatcanbeconvertedintopressureinastationarypartofthepump,knownasthediffuser.Inhigh-pressurepumps,anumberofimpellermaybeusedinseries,andthediffusersfollowingeachimpellermaycontainguidevanestograduallyreducetheliquidvelocity.Forlower-pressurepumps,thediffuserisgenerallyaspiralpassage,knownasavolute,withitscross-sectionalareaincreasinggraduallytoreducethevelocityefficiently.Theimpellermustbeprimedbeforeitcanbeginoperation,thatis,theimpellermustbesurroundedbyliquidwhenthepumpisstarted.Thiscanbedonebyplacingacheckvalveinthesuctionline,whichholdstheliquidinthepumpwhentheimpellerisnotrotating.Ifthisvalveleaks,thepumpmayneedtobeprimedbytheintroductionofliquidfromanoutsidesourcesuchasthedischargereservoir.Acentrifugalpumpgenerallyhasavalveinthedischargelinetocontroltheflowandpressure.Forlowflowsandhighpressures,theactionoftheimpellerislargelyradial.Forhigherflowsandlowerdischargepressure,thedirectionoftheflowwithinthepumpismorenearlyparalleltotheaxisoftheshaft,andthepumpissaidtohaveanaxialflow.Theimpellerinthiscaseactsasapropeller.Thetransitionfromonesetoffloeconditionstotheotherisgradual,andforintermediatecondition,thedeviceiscalledamixed-flowpump.2.TheCentrifugalPumpThecentrifugalpumpisbyfarthemostwidelyusedtypeinthechemicalandpetroleumindustries.Itwillpumpliquidswithverywiderangingpropertiesandsuspensionswithahighsolidscontentincluding,forexample,cementslurries,andmaybeconstructedfromaverywiderangofcorrosionresistantmaterials.Thewholepumpcasingmaybeconstructedfromplasticsuchaspolypropyleneoritmaybefittedwithacorrosion-resistantlining.Becauseitoperatesathighspeed,itmaybedirectlycoupledtoanelectricmotoranditwillgiveahighflowrateforitssize.Inthistypeofpump,thefluidisfedtothecentreofarotatingimpellerandisthrownoutwardbycentrifugalaction.Asaresultofthehighspeedofrotationtheliquidacquiresahighkineticenergyandthepressuredifferencebetweenthesuctionanddeliverysidesarisesfromtheconversionofkineticenergyintopressureenergy.Theimpellerconsistsofaseriesofcurvedvanessoshapedthattheflowwithinthepumpisassmoothaspossible.Thegreaterthenumberofvanesontheimpeller,thegreateristhecontroloverthedirectionoftheliquidandhencethesmallerarethelossesduetoturbulenceandcirculationbetweenthevanes.Intheopenimpeller,thevanesarefixedtoacentralhub,whereasintheclosedtypethevanesareheldbetweentwosupportingplatesandleakageacrosstheimpellerisreduced.Aswillbeseenlater,theangleofthetipsofthebladesverylargelydeterminestheoperatingcharacteristicsofthepump.Theliquidentersthecasingofthepump,normallyinanaxialdirection,andispickedupbythevanesoftheimpeller.Inthesimpletypeofcentrifugalpump,theliquiddischargesintoavolute,achamberofgraduallyincreasingcross—sectionwithatangentialoutlet.AvolutetypeofpumpisshowninFig.(a).Intheturbinepump[-Fig.(b)]theliquidflowsfromthemovingvanesoftheimpellerthroughaseriesoffixedvanesformingadiffusionring.Thisgivesamoregradualchangeindirectiontothefluidandmoreefficientconversionofkineticenergyintopressureenergythanisobtainedwiththevolutetype.Theangleoftheleadingedgeofthefixedvanesshouldbesuchthatthefluidisreceivedwithoutshock.Theliquidsflowsalongthesurfaceoftheimpellervanewithacertainvelocitywhilstthetipofthevaneismovingrelativetothecasingofthepump.Thedirectionofmotionoftheliquidrelativetothepumpcasing--andtherequiredangleofthefixedvanes—isfoundbycompoundingthesetwovelocities.InFig.c,c.isthevelocityoftheliquidrelativetothevaneandisthetangentialvelocityofthetipofthevane;compoundingthesetwovelocitiesgivestheresultantvelocityoftheliquid.Itisapparent,therefore,thattherequiredvaneangleinthediffuserisdependentonthethroughput,thespeedofrotation,andtheangleoftheimpellerblades.Thepumpwillthereforeoperateatmaximumefficiencyonlyoveranarrowrangeofconditions.VirtualheadofacentrifugalpumpThemaximumpressureisdevelopedwhenthewholeoftheexcesskineticenergyofthefluidisconvertedintopressureenergy.Asindicatedbelow.theheadisproportionaltothesquareoftheradiusandtothespeed,andisoftheorderof60mforasingle—stagecentrifugalpump;forhigherpressures,multistagepumpsmustbeused.Considertheliquidwhichisrotatingatadistanceofbetweenrandr+drfromthecentreofthepump(Fig.d).dThemassofthiselementoffluiddmisgivenby2πrdrdρ,whereρisthedensityofthefluidand6isthewidthoftheelementoffluid。Ifthefluidistravelingwithavelocityuandatanangleθtothetangentialdirection.Theangularmomentumofthismassoffluid=dM(urcosθ)Thetorqueactingonthefluiddτisequaltotherateofchangeofangularmomentumwithtime,asitgoesthroughthepumpDτ=dMα/αt(urcosθ)=2πrbρdrα/αt(urcosθ)Thevolumetricrateofflowofliquidthroughthepump:Q=2πrbα/αtDr=Qρd(urcosθ)Thetotaltorqueactingontheliquidinthepumpisthereforeobtainedintegratingdτbetweenthelimitsdenotedbysuffix1andsuffix2,wheresuffix1referstotheconditionsattheinlettothepumpandsuffix2referstotheconditionatthedischarge.Thus,τ=Qρ(cos-cos)TheadvantagesanddisadvantagesofthecentrifugalpumpThemainadvantagesare:(1)Itissimpleinconstructionandcan,therefore,bemadeinawiderangeofmaterials(2)Thereisacompleteabsenceofvalves.(3)Itoperatesathighspeed(upto100Hz)and,therefore,canbecoupleddirectlytoanelectricmotor.Ingeneral,thehigherthespeedthesmallerthepumpandmotorforagivenduty.(4)Itgivesasteadydelivery.(5)Maintenancecostsarelowerthanforanyothertypeofpump.(6)Nodamageisdonetothepumpifthedeliverylinebecomesblocked,provideditisnotruninthisconditionforaprolongedperiod.(7)Itismuchsmallerthanotherpumpsofequalcapacity.Itcan,therefore,bemadeintoasealedunitwiththedrivingmotorandimmersedinthesuctiontank.(8)Liquidscontaininghighproportionsofsuspendedsolidsarereadilyhandled.Themaindisadvantagesare:(1)Thesingle—stagepumpwillnotdevelopahighpressure.Multistagepumpswilldevelopgreaterheadsbattheyareverymuchmoreexpensiveandcannotreadilybemadeincorrosion—resistantmaterialbecauseoftheirgreatercomplexity.Itisgenerallybettertouseveryhighspeedsinordertoreducethenumberofstagesrequired.(2)Itoperatesatahighefficiencyoveronlyalimitedrangeofconditions;thisappliesespeciallytoturbinepumps.(3)Itisnotusuallyself-priming.(4)Ifanon-returnvalveisnotincorporatedinthedeliveryorsuctionline,theliquidwillrunbackintothesuctiontankassoonasthepumpstops.(5)Veryviscousliquidscannothehandledefficiently.3.Cavitationincentrifugalpump(1)Theterm‘cavitation’comesfromtheLatinwordcavus,whichmeansahollowspaceoracavity.Webster’sDictionarydefinestheword‘cavitation’astherapidformationandcollapseofcavitiesinaflowingliquidinregionsofverylowpressure.Inanydiscussiononcentrifugalpumpsvarioustermslikevaporpockets,gaspockets,holes,bubbles,etc.areusedinplaceofthetermcavities.Theseareoneandthesamethingandneednotbeconfused.Thetermbubbleshallbeusedhereafterinthediscussion.Inthecontextofcentrifugalpumps,thetermcavitationimpliesadynamicprocessofformationofbubblesinsidetheliquid,theirgrowthandsubsequentcollapseastheliquidflowsthroughthepump.1.Vaporbubblesareformedduetothevaporisationofaprocessliquidthatisbeingpumped.ThecavitationconditioninducedbyformationandcollapseofvaporbubblesiscommonlyreferredtoasVaporousCavitation.2.Gasbubblesareformedduetothepresenceofdissolvedgasesintheliquidthatisbeingpumped(generallyairbutmaybeanygasinthesystem).ThecavitationconditioninducedbytheformationandcollapseofgasbubblesiscommonlyreferredtoasGaseousCavitation.Totalpressure:Thesumofstaticpressureanddynamicpressureisdefinedasthetotalpressure.Itisameasureoftotalenergyofthemovingfluidstream.i.e.bothpotentialandkineticenergy.Vaporpressureisthepressurerequiredtokeepaliquidinaliquidstate.Ifthepressureappliedtothesurfaceoftheliquidisnotenoughtokeepthemoleculesprettyclosetogether,themoleculeswillbefreetoseparateandroamaroundasagasorvapor.Thevaporpressureisdependentuponthetemperatureoftheliquid.Higherthetemperature,higherwillbethevaporpressure.(3)CavitationDamage:Cavitationcandestroypumpsandvalves,andcavitationcausesalossofefficiencyinpumpsimmediately,andalsoacontinuouslyincreasinglossofefficiencyastheequipmentdegradesduetoerosionofthepumpcomponentsbycavitation.ThereforeItisimportanttounderstandthephenomenasufficientlytopredictandthereforereducecavitationanddamagefromcavitation,andalsotodiagnoseandfindpracticalsolutionstocavitationproblems。1)CavitationEnhancedChemicalErosionPumpsoperatingundercavitationconditionsbecomemorevulnerabletocorrosionandchemicalattack.Metalscommonlydevelopanoxidelayerorpassivatedlayerwhichprotectsthemetalfromfurthercorrosion.Cavitationcanremovethisoxideorpassivelayeronacontinuousbasisandexposeunprotectedmetaltofurtheroxidation.Thetwoprocesses(cavitation&oxidation)thenworktogethertorapidlyremovemetalfromthepumpcasingandimpeller.Stainlesssteelsarenotinvulnerabletothisprocess.2)MaterialsSelectionThereisnometal,plastic,oranyothermaterialknowntoman,thatcanwithstandthehighlevelsofenergyreleasedbycavitationintheformsofheatandpressure.Inpracticehowever,materialscanbeselectedthatresultinlongerlifeandcustomervalueintheirabilitytowithstandcavitationenergies,sothatattentiontopumpconstructionmaterialsisvaluableandproductive.Wherecavitationisnotaproblemornotpredictedtobeaproblem,commonmaterialssuchascastironandbronzearesuitableforpumpconstruction.Therearemillionsofcastironandbronzepumpsthatworkfinefor20yearsormorewithoutanyproblemeventhoughmanyofthosepumpsexperiencesomecavitation.(4)MechanismofCavitation:ThephenomenonofcavitationisastepwiseprocessasshowninFigure(below).StepOne,Formationofbubblesinsidetheliquidbeingpumped.Thebubblesforminsidetheliquidwhenitvaporisesi.e.phasechangefromliquidtovapor.Buthowdoesvaporizationoftheliquidoccurduringapumpingoperation?Vaporizationofanyliquidinsideaclosedcontainercanoccurifeitherpressureontheliquidsurfacedecreasessuchthatitbecomesequaltoorlessthantheliquidvaporpressureattheoperatingtemperature,orthetemperatureoftheliquidrises,CollapseofaVaporBubbleraisingthevaporpressuresuchthatitbecomesequaltoorgreaterthantheoperatingpressureattheliquidsurface.Forexample,ifwateratroomtemperature(about77°F)iskeptinaclosedcontainerandthesystempressureisreducedtoitsvaporpressure(about0.52psia),thewaterquicklychangestoavapor.Also,iftheoperatingpressureistoremainconstantatabout0.52psiaandthetemperatureisallowedtoriseabove77°F,thenthewaterquicklychangestoavapor.CollapseofaVaporBubbleJustlikeinaclosedcontainer,vaporizationoftheliquidcanoccurincentrifugalpumpswhenthelocalstaticpressurereducesbelowthatofthevaporpressureoftheliquidatthepumpingtemperature.StepThree,Collapseofbubbles,Asthevaporbubblesmovealongtheimpellervanes,thepressurearoundthebubblesbeginstoincreaseuntilapointisreachedwherethepressureontheoutsideofthebubbleisgreaterthanthepressureinsidethebubble.Thebubblecollapses.Theprocessisnotanexplosionbutratheranimplosion(inwardbursting).Hundredsofbubblescollapseatapproximatelythesamepointoneachimpellervane.Bubblescollapsenon-symmetricallysuchthatthesurroundingliquidrushestofillthevoidformingaliquidmicrojet.Themicrojetsubsequentlyrupturesthebubblewithsuchforcethatahammeringactionoccurs.Bubblecollapsepressuresgreaterthan1GPa(145x106psi)havebeenreported.Thehighlylocalizedhammeringeffectcanpitthepumpimpeller.Thepittingeffectisillustratedschematicallyinthisthefigure.Afterthebubblecollapses,ashockwaveemanatesoutwardfromthepointofcollapse.Thisshockwaveiswhatweactuallyhearandwhatwecall"cavitation".Theimplosionofbubblesandemanationofshockwaves(redcolor).Innutshell,themechanismofcavitationisallaboutformation,growthandcollapseofbubblesinsidetheliquidbeingpumped.Buthowcantheknowledgeofmechanismofcavitationcanreallyhelpintroubleshootingacavitationproblem.Theconceptofmechanismcanhelpinidentifyingthetypeofbubblesandthecauseoftheirformationandcollapse.(5)SolutionandRemedies:Forvaporizationproblems(cavitation)(1.Tocurevaporizationproblemsyoumusteitherincreasethesuctionhead,lowerthefluidtemperature,ordecreasetheN.P.S.H.Required.Weshalllookateachpossibility:1).3)reducetheN.P.S.H.Required? 1.Removedebrisfromsuctionline.2.Movepumpclosertosourcetank/sump3.Increasesuctionlinediameter.4.Decreasesuctionliftrequirement5.InstalllargerpumprunningslowerwhichwilldecreasetheNetPositiveSuctionHeadRequiredbythepump(NPSHR).6.Increasedischargepressure.7.FullyopenSuctionlinevalve.(3.Fordischargecavitation:1.Removedebrisfromdischargeline.2.Decreasedischargelinelength3.Increasedischargelinediameter.4.Decreasedischargestaticheadrequirement.5.Installlargerpump,whichwillmaintaintherequiredflowwithoutdischargecavitating.6.Fullyopendischargelinevalve.(4.ForRecirculationcavitation:1.Designingthepumpforlowersuction-specificspeedsandlimitingtherangeofoperationtoflowcapacitiesabovethepointofrecirculation.2.Raisingthesuctionhead.Selectedfrom:1.J.M.Coucson,J.F.Richardson,ChemicalEngineering,Butterworth-HeinemannLtd.,19952.Delgosha,O.C.,Patella,R.F.,Reboud,J.L.:ExperimentalandNumericalStudiesinaCentrifugalPumpwithTwo-DimensionalCurvedBladesinCavitatingCondition.JournalofFluidsEngineering,vol.125,pp.970―978,(2003).3.Zhang,J.F.,Yuan,S.Q.,Fu,Y.D.:NumericalForecastoftheInfluenceofSplitterBladesontheFlowFieldandCharacteristicsofaCentrifugalpump,ChineseJournalofChemicalEngineering,vol.45,pp.131-137,(2009).4.P.D.Lyapkov,TrudyVNII,No.5,Gostoptekhizdat,Moscow(1959).5.Zhang,J.F.,Yuan,S.Q.,Fu,Y.D.:NumericalForecastoftheInfluenceofSplitterBladesontheFlowFieldandCharacteristicsofaCentrifugalpump,ChineseJournalofChemicalEngineering,vol.45,pp.131-137,(2009).文獻(xiàn)名稱(中文)化工工業(yè)離心泵摘要:離心泵是通過葉輪的旋轉(zhuǎn)把液體的內(nèi)能轉(zhuǎn)換成動(dòng)能的一種旋轉(zhuǎn)裝置。液體由吸入口進(jìn)入蝸殼,通過高速旋轉(zhuǎn)的葉輪,液體呈放射狀加速?gòu)谋弥邢蛲廨敵?,這時(shí)葉輪附近留出一個(gè)真空,不斷吸引更多的流體進(jìn)入泵的葉輪附近,這樣由葉輪的旋轉(zhuǎn)來完成液體的進(jìn)出。這篇文章主要講述了關(guān)于離心泵的發(fā)展史,離心泵工作原理的分析,汽蝕的基本原理和預(yù)防汽蝕的措施等的一系列問題。從而幫助我們加深對(duì)離心泵的理解。關(guān)鍵詞:離心泵介紹工作原理汽蝕汽蝕原理預(yù)防措施1.介紹泵的提出,最先是用于轉(zhuǎn)移或壓縮液體和氣體的設(shè)備。在所有泵中,我們一步步采取措施來防止氣蝕,氣蝕將減少流量并且破壞泵的結(jié)構(gòu)。用來處理氣體和蒸汽的泵稱為氣體壓縮機(jī),研究流體的運(yùn)動(dòng)的科學(xué)稱為流體力學(xué)。水泵是用管子連接的機(jī)械把水從一個(gè)地方傳到另一個(gè)地方。水泵的操作壓力從一磅到一萬磅每平方英尺。日常生活中,泵是很多見的,有用于在魚池和噴泉使水循環(huán)和向水中充氣的電泵,還有用于從住宅處把水引走的污水泵。離心泵的早期形式螺桿泵,是通過一個(gè)管子連接一根螺桿組成的,它是利用螺桿的旋轉(zhuǎn)把水提升上去。螺旋泵經(jīng)常用在污水處理廠中,因?yàn)樗鼈兛梢赃\(yùn)輸大量的水,而不會(huì)因?yàn)樗槠氯?。在遠(yuǎn)古的中東,因?yàn)閷?duì)農(nóng)場(chǎng)進(jìn)行灌溉的需求,所以有一種強(qiáng)大的動(dòng)力去推進(jìn)水泵的進(jìn)程。在這些區(qū)域里,早期的泵是為了將水一桶一桶的從水源或河渠中提升到容器中。古希臘的發(fā)明家和數(shù)學(xué)家阿基米德被認(rèn)為是公元前3世紀(jì)首先提出螺旋泵的發(fā)明家。之后,古希臘發(fā)明家發(fā)明了第一個(gè)提水泵。在十七世紀(jì)末和十八世紀(jì)初,英國(guó)的工程師ThomasSavory,法國(guó)的物理學(xué)家DenisPa]pin,和英國(guó)的鐵匠和發(fā)明家TomasNewcomen,它們發(fā)明了用蒸汽驅(qū)動(dòng)活塞的水泵。蒸汽驅(qū)動(dòng)的水泵首先廣泛的被應(yīng)用是在從煤礦往外輸水過程中。現(xiàn)在離心泵使用的例子,是來自于哥倫比亞河上使用的大古利水壩。這個(gè)泵有超過灌溉一百萬英畝的土地能力。離心泵被認(rèn)為是旋轉(zhuǎn)泵,它有一個(gè)旋轉(zhuǎn)地葉輪,葉輪上有葉片,葉片是侵入液體中的。液體也是由葉輪軸向進(jìn)入泵,并且旋轉(zhuǎn)的葉輪將液體甩向葉片根部。同時(shí)葉輪也給液體一個(gè)較高的速度,這個(gè)速度通過泵的一個(gè)固定部件轉(zhuǎn)化成壓力。我們一般稱為擴(kuò)壓器。在高壓泵里,很多葉輪可以被系列選用,并且在一個(gè)葉輪后有一個(gè)擴(kuò)壓器,也可能含有導(dǎo)輪,可以逐漸的降低液體的速度。對(duì)于低壓泵來說,擴(kuò)壓泵一般就是一個(gè)螺旋形的通道,成為蝸殼,作用原理是攔截面逐漸增加可以有效降低流體的速度。在泵工作前,葉輪必須被灌注,也就是在泵啟動(dòng)時(shí),葉輪必須被液體包圍。也可以通過在吸入線上放另一個(gè)截止閥來實(shí)現(xiàn),截止閥在泵停止工作時(shí)是液體保留在泵內(nèi)。如果截止閥泄露了,泵可以通過閥的入口,從外面的水源比如說蓄水池來取水灌注。一般離心泵在排水線的地方也有一個(gè)閥控制流體和壓力。對(duì)于小流量和高壓力來說,葉輪作用很大部分是放射狀的。對(duì)于高速流體和低壓排水壓力,泵中流體的方向可以近似于與軸的軸向平行,這時(shí)泵有一個(gè)軸流。這時(shí)葉輪就近似于螺旋推進(jìn)器。從一種流動(dòng)的狀態(tài)轉(zhuǎn)換到另一種流動(dòng)的狀態(tài)是漸進(jìn)的,對(duì)于中間狀態(tài),設(shè)備可稱為混流泵。2.離心泵離心泵是化工和石油工業(yè)中應(yīng)用最廣泛的一種泵。它能輸送性能非常廣泛的液體和固體含量高的懸浮液,像泥泥漿,可以用多種抗腐蝕材料建造。泵的整個(gè)外殼可用像聚丙烯這樣的塑料來建造,或者用腐蝕襯里加工。由于它的高速運(yùn)轉(zhuǎn),可將其直接耦合到電動(dòng)機(jī)上,由電動(dòng)機(jī)的規(guī)格大小決定流量高低。在這樣的泵中,液體被吸入到旋轉(zhuǎn)葉輪的中心,通過離心作用向外流動(dòng)。由于高速旋轉(zhuǎn),液體在吸入口和因動(dòng)能轉(zhuǎn)化為壓能的出口側(cè)獲得較高的動(dòng)能和壓力差。葉輪由一系列弧形葉片組成,因此能使液體的流動(dòng)盡可能平穩(wěn)。葉輪中葉片越多,則液體的流動(dòng)方向越好控制,那么液體循環(huán)流動(dòng)時(shí)因波動(dòng)引起的損失就越少。在開式葉輪中,葉片被固定在中心輪轂上,而在閉式中葉片則是用兩塊鋼板支撐以減少漏液。由此可以看出,在很大程度上,葉片末端的角度決定了泵的工作特性。流體通常在軸向上通過葉片的上升進(jìn)入泵殼。在這種簡(jiǎn)單類型的離心泵中,液體由切向方向隨著橫截面逐步流到蝸殼中。圖(a)所示為旋渦型泵。圖(b)中,在渦輪泵中的液體隨移動(dòng)的葉輪在一系列固定葉片中形成擴(kuò)散環(huán)。這種旋渦能逐漸改變流體的流動(dòng)方向,并有效地將動(dòng)能轉(zhuǎn)化成壓能。固定葉片前緣處的流體應(yīng)該沒有受到?jīng)_擊。沿著葉輪葉片,液體的流動(dòng)具有一定速度,同時(shí),葉片末端相對(duì)于泵體有移動(dòng)。液體的運(yùn)動(dòng)方向相對(duì)于泵殼——和固定葉片所需的角度一樣——是兩個(gè)速度的合成方向。在圖c中,c.是液體相對(duì)于葉片的速度,是葉片上某點(diǎn)的切向速度;將這兩個(gè)速度合成即可得到液體的速度。因此,很明顯,在擴(kuò)散環(huán)中所需要的葉輪角由葉輪的產(chǎn)量、旋轉(zhuǎn)速度和葉片的角度決定。所以,泵在很嚴(yán)格的條件下才能有最大的運(yùn)行效能。 2.1離心泵的有效壓頭 當(dāng)流體所剩余的動(dòng)能全部轉(zhuǎn)化為壓能時(shí),壓力最大。如下文所述,有效壓頭和半徑的平方以及速度成正比,壓力更高時(shí),必須使用多級(jí)泵??紤]到液體在離泵中心r到r+dr的距離內(nèi)旋轉(zhuǎn),如圖dd.所示。這一部分流體的質(zhì)量為dM=2πrdrdρ,其中ρ是流體的密度,b是這部分流體的寬度。 如果流體在與切向方向成θ角上以速度u流動(dòng),則這部分質(zhì)量流體的角動(dòng)量為=dM(urcosθ) 流體通過泵所產(chǎn)生的扭轉(zhuǎn)力等于角動(dòng)量對(duì)時(shí)間的改變量dτ=dM(urcosθ)=2πrbρdr(urcosθ) 液體的體積流速為:Q=2πrbDr=Qρd(urcosθ) 因此,液體在泵中受到總的扭轉(zhuǎn)力由dτ在小標(biāo)1和2之間積分而得,下標(biāo)1引用的是泵入口處的條件,小標(biāo)2是出口時(shí)的條件。于是有:τ=Qρ(u2r2cosθ2–u1r1cosθ1) 2.2離心泵的優(yōu)缺點(diǎn)主要優(yōu)點(diǎn)有:(1)制造簡(jiǎn)單,可用多種材料加工。(2)無閥門。(3)高速運(yùn)轉(zhuǎn)(高達(dá)100赫茲),因此可直接耦合到電動(dòng)機(jī)上。一般地,速度越大,泵和電動(dòng)機(jī)的效率越小。(4)能平穩(wěn)傳送。(5)維修費(fèi)用比其他類型的泵少。(6)輸送堵塞時(shí),只要不是長(zhǎng)時(shí)間運(yùn)作,泵就不會(huì)被損壞。(7)與其它泵相比,體積較小。因此,它可以利用電動(dòng)機(jī)做成密封裝置沉浸在吸收罐中。(8)能容易輸送含有高比例懸浮固體的液體。主要缺點(diǎn)有:(1)單級(jí)泵不能提高壓力。而多級(jí)泵能提高壓頭,但價(jià)格昂貴而且由于它們的復(fù)雜性不能用抗腐蝕的材料加工建造。通常用較高的速度來減少所需要的級(jí)數(shù)。(2)只有在有限條件下才能以最高效能運(yùn)作:尤其是渦輪泵。(3)它不能自動(dòng)注水。(4)在輸送和吸收管道中,如果沒有止回閥,液體就會(huì)在泵停止瞬間倒流到吸入槽內(nèi)。(5)不能有效處理粘性液體。3.離心泵中的汽蝕(1)“汽蝕”一詞來源于拉丁語高弓足,這意味著一個(gè)中空的空間或空腔。韋氏詞典定義的字是在一個(gè)非常低的壓力區(qū)域流動(dòng)的液體腔內(nèi)迅速形成和崩潰的“腔”。在離心泵中的任何地方像蒸氣泡沫,氣體泡沫,氣體破洞,氣泡等各種條件長(zhǎng)期作用都會(huì)造成汽蝕。這是一個(gè)各種結(jié)果同時(shí)作用的事情,不能簡(jiǎn)單地看待。汽蝕的形成討論如下。在離心泵的蝸殼中,汽蝕意味著一個(gè)氣泡內(nèi)的液體,他們的形成,成長(zhǎng)和隨后通過泵的液體流動(dòng)崩潰所經(jīng)歷的動(dòng)態(tài)過程。一般來說,液體內(nèi)氣泡的形成有兩種類型:蒸汽氣泡或氣態(tài)空泡。1.由于一個(gè)進(jìn)程正在進(jìn)行的液體汽化而引起的泡沫的形成。蒸汽氣泡的形成和崩潰引起的汽蝕條件通常被稱為霧狀氣蝕。2.泡沫形成的過程中,由于正在往泵中輸送的液體中溶解入氣體(一般空氣的存在,但可能是系統(tǒng)中的任何氣體),由這些氣體的形成和崩潰引起的汽蝕條件通常被稱為氣態(tài)空泡。度作者:J.M.Coucson,J.F.Richardson出版日期(期刊號(hào)):ChemicalEngineering,1995出版單位:Butterworth-HeinemannLtd參考文獻(xiàn)[1]關(guān)醒凡.泵的理論與設(shè)計(jì).機(jī)械工業(yè)出版社,1987.[2]高殿榮.工程流體力學(xué).機(jī)械工業(yè)出版社,2000.[3]韓占忠.Fluent流體工程仿真計(jì)算實(shí)例與應(yīng)用.北京理工出版社,2004.指導(dǎo)教師意見:指導(dǎo)教師簽字:年月日系(教研室)意見:主任簽字:年月日注:此表單獨(dú)作為一頁(yè)?;贑8051F單片機(jī)直流電動(dòng)機(jī)反饋控制系統(tǒng)的設(shè)計(jì)與研究基于單片機(jī)的嵌入式Web服務(wù)器的研究MOTOROLA單片機(jī)MC68HC(8)05PV8/A內(nèi)嵌EEPROM的工藝和制程方法及對(duì)良率的影響研究基于模糊控制的電阻釬焊單片機(jī)溫度控制系統(tǒng)的研制基于MCS-51系列單片機(jī)的通用控制模塊的研究基于單片機(jī)實(shí)現(xiàn)的供暖系統(tǒng)最佳啟停自校正(STR)調(diào)節(jié)器單片機(jī)控制的二級(jí)倒立擺系統(tǒng)的研究基于增強(qiáng)型51系列單片機(jī)的TCP/IP協(xié)議棧的實(shí)現(xiàn)基于單片機(jī)的蓄電池自動(dòng)監(jiān)測(cè)系統(tǒng)基于32位嵌入式單片機(jī)系統(tǒng)的圖像采集與處理技術(shù)的研究基于單片機(jī)的作物營(yíng)養(yǎng)診斷專家系統(tǒng)的研究基于單片機(jī)的交流伺服電機(jī)運(yùn)動(dòng)控制系統(tǒng)研究與開發(fā)基于單片機(jī)的泵管內(nèi)壁硬度測(cè)試儀的研制基于單片機(jī)的自動(dòng)找平控制系統(tǒng)研究基于C8051F040單片機(jī)的嵌入式系統(tǒng)開發(fā)基于單片機(jī)的液壓動(dòng)力系統(tǒng)狀態(tài)監(jiān)測(cè)儀開發(fā)模糊Smith智能控制方法的研究及其單片機(jī)實(shí)現(xiàn)一種基于單片機(jī)的軸快流CO〈,2〉激光器的手持控制面板的研制基于雙單片機(jī)沖床數(shù)控系統(tǒng)的研究基于CYGNAL單片機(jī)的在線間歇式濁度儀的研制基于單片機(jī)的噴油泵試驗(yàn)臺(tái)控制器的研制基于單片機(jī)的軟起動(dòng)器的研究和設(shè)計(jì)基于單片機(jī)控制的高速快走絲電火花線切割機(jī)床短循環(huán)走絲方式研究基于單片機(jī)的機(jī)電產(chǎn)品控制系統(tǒng)開發(fā)基于PIC單片機(jī)的智能手機(jī)充電器基于單片機(jī)的實(shí)時(shí)內(nèi)核設(shè)計(jì)及其應(yīng)用研究基于單片機(jī)的遠(yuǎn)程抄表系統(tǒng)的設(shè)計(jì)與研究基于單片機(jī)的煙氣二氧化硫濃度檢測(cè)儀的研制基于微型光譜儀的單片機(jī)系統(tǒng)單片機(jī)系統(tǒng)軟件構(gòu)件開發(fā)的技術(shù)研究基于單片機(jī)的液體點(diǎn)滴速度自動(dòng)檢測(cè)儀的研制基于單片機(jī)系統(tǒng)的多功能溫度測(cè)量?jī)x的研制基于PIC單片機(jī)的電能采集終端的設(shè)計(jì)和應(yīng)用基于單片機(jī)的光纖光柵解調(diào)儀的研制氣壓式線性摩擦焊機(jī)單片機(jī)控制系統(tǒng)的研制基于單片機(jī)的數(shù)字磁通門傳感器基于單片機(jī)的旋轉(zhuǎn)變壓器-數(shù)字轉(zhuǎn)換器的研究基于單片機(jī)的光纖Bragg光柵解調(diào)系統(tǒng)的研究單片機(jī)控制的便攜式多功能乳腺治療儀的研制基于C8051F020單片機(jī)的多生理信號(hào)檢測(cè)儀基于單片機(jī)的電機(jī)運(yùn)動(dòng)控制系統(tǒng)設(shè)計(jì)Pico專用單片機(jī)核的可測(cè)性設(shè)計(jì)研究基于MCS-51單片機(jī)的熱量計(jì)基于雙單片機(jī)的智能遙測(cè)微型氣象站MCS-51單片機(jī)構(gòu)建機(jī)器人的實(shí)踐研究基于單片機(jī)的輪軌力檢測(cè)基于單片機(jī)的GPS定位儀的研究與實(shí)現(xiàn)基于單片機(jī)的電液伺服控制系統(tǒng)用于單片機(jī)系統(tǒng)的MMC卡文件系統(tǒng)研制基于單片機(jī)的時(shí)控和計(jì)數(shù)系統(tǒng)性能優(yōu)化的研究基于單片機(jī)和CPLD的粗光柵位移測(cè)量系統(tǒng)研究單片機(jī)控制的后備式方波UPS提升高職學(xué)生單片機(jī)應(yīng)用能力的探究基于單片機(jī)控制的自動(dòng)低頻減載裝置研究基于單片機(jī)控制的水下焊接電源的研究基于單片機(jī)的多通道數(shù)據(jù)采集系統(tǒng)基于uPSD3234單片機(jī)的氚表面污染測(cè)量?jī)x的研制基于單片機(jī)的紅外測(cè)油儀的研究96系列單片機(jī)仿真器研究與設(shè)計(jì)基于單片機(jī)的單晶金剛石刀具刃磨設(shè)備的數(shù)控改造基于單片機(jī)的溫度智能控制系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)基于MSP430單片機(jī)的電梯門機(jī)控制器的研制基于單片機(jī)的氣體測(cè)漏儀的研究基于三菱M16C/6N系列單片機(jī)的CAN/USB協(xié)議轉(zhuǎn)換器基于單片機(jī)和DSP的變壓器油色譜在線監(jiān)測(cè)技術(shù)研究基于單片機(jī)的膛壁溫度報(bào)警系統(tǒng)設(shè)計(jì)基于AVR單片機(jī)的低壓無功補(bǔ)償控制器的設(shè)計(jì)基于單片機(jī)船舶電力推進(jìn)電機(jī)監(jiān)測(cè)系統(tǒng)基于單片機(jī)網(wǎng)絡(luò)的振動(dòng)信號(hào)的采集系統(tǒng)基于單片機(jī)的大容量數(shù)據(jù)存儲(chǔ)技術(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西玉林市福綿區(qū)2021-2022學(xué)年六年級(jí)上學(xué)期英語期末試卷
- IT行業(yè)人事工作總結(jié)
- 《獼猴桃病蟲害防治》課件
- 《認(rèn)識(shí)水果蔬菜》課件
- 2024年江蘇省無錫市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年山東省聊城市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2021年甘肅省平?jīng)鍪泄_招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年福建省龍巖市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2023年山東省濱州市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- “異地戀更能考驗(yàn)?zāi)猩€是女生”辯論賽策劃書
- 房地產(chǎn)園林綠化行業(yè)研究報(bào)告:市場(chǎng)規(guī)模統(tǒng)計(jì)、供需態(tài)勢(shì)及發(fā)展前景預(yù)測(cè)報(bào)告(智研咨詢)
- 2024春節(jié)前安全培訓(xùn)
- 物業(yè)管理基礎(chǔ)培訓(xùn)
- 視頻監(jiān)控方案-高空瞭望解決方案
- 完整液壓系統(tǒng)課件
- 2024-2030年中國(guó)通信工程行業(yè)發(fā)展分析及發(fā)展前景與趨勢(shì)預(yù)測(cè)研究報(bào)告
- 2024四川省專業(yè)技術(shù)人員繼續(xù)教育考試題及答案
- 2024六年級(jí)英語上冊(cè) Module 6 Unit 2 I've got a stamp from China教案 外研版(三起)
- 2024年安全員A證試題庫(kù)(附答案)
- 全球傳播導(dǎo)論 課件 第六章 全球傳播與公共外交
- 2022-2023學(xué)年廣東省廣州市天河區(qū)六年級(jí)(上)期末數(shù)學(xué)試卷(含答案)
評(píng)論
0/150
提交評(píng)論