小學數(shù)學圓的知識點_第1頁
小學數(shù)學圓的知識點_第2頁
小學數(shù)學圓的知識點_第3頁
小學數(shù)學圓的知識點_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

小學數(shù)學圓的知識點1.圓:平面上到定點的距離等于定長的全部點組成的***形叫做圓。

2.圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示

3.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

4.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

圓的直徑和半徑都有很多條。圓是軸對稱***形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。

圓的半徑或直徑打算圓的大小,圓心打算圓的位置。

5.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

6.圓周率:圓的周長與直徑的比值叫做圓周率。

圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母表示。計算時,通常取它的近似值,3.14。

直徑所對的圓周角是直角。90的圓周角所對的弦是直徑。

7.圓的面積公式:圓所占平面的大小叫做圓的面積。r^2;,用字母S表示。

一條弧所對的圓周角是圓心角的二分之一。

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

在同圓或等圓中,假如兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

8.周長計算公式

(1)已知直徑:C=d

(2)已知半徑:C=2r

(3)已知周長:D=c/

(4)圓周長的一半:1/2周長(曲線)

(5)半圓的周長:1/2周長+直徑(2+1)

9.面積計算公式:

(1)已知半徑:S=r2

(2)已知直徑:S=(d/2)2

(3)已知周長:S=2

擴展資料

1、圓是定點的距離等于定長的點的集合

2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

3、圓的外部可以看作是圓心的距離大于半徑的點的集合

4、同圓或等圓的半徑相等

5、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

6、和已知線段兩個端點的距離相等的點的軌跡,是這條線段的垂直平分線

7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

9、定理不在同始終線上的三點確定一個圓。

10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

11、推論1:

①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

12、推論2:圓的兩條平行弦所夾的弧相等

13、圓是以圓心為對稱中心的中心對稱***形

14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

15、推論:在同圓或等圓中,假如兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

16、定理:一條弧所對的圓周角等于它所對的圓心角的一半

17、推論:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

18、推論:半圓(或直徑)所對的圓周角是直角;90的圓周角所對的弦是直徑

19、推論:假如三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

20、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

21、①直線L和⊙O相交d﹤r

②直線L和⊙O相切d=r

③直線L和⊙O相離d﹥r

22、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

23、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

24、推論:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

25、推論:經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

27、圓的外切四邊形的兩組對邊的和相等

28、弦切角定理:弦切角等于它所夾的弧對的圓周角

29、推論:假如兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

30、相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

31、推論:假如弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

34、假如兩個圓相切,那么切點肯定在連心線上

35、①兩圓外離d﹥R+r

②兩圓外切d=R+r

③兩圓相交R-r﹤d﹤R+r(R﹥r)

④兩圓內(nèi)切d=R-r(R﹥r)

⑤兩圓內(nèi)含d﹤R-r(R﹥r)

36、定理:相交兩圓的連心線垂直平分兩圓的公共弦

37、定理:把圓分成n(n3):

⑴依次連結各分點所得的多邊形是這個圓的內(nèi)接正n邊形

⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

38、定理:

任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

39、正n邊形的每個內(nèi)角都等于(n-2)180/n

40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

41、正n邊形的面積Sn=pr/2p表示正n邊形的周長,r為邊心距

42、正三角形面積3a2/4a表示邊長

43、假如在一個頂點四周有k個正n邊形的角,由于這些角的和應為360,因此

k(n-2)180/n=360化為(n-2)(k-2)=4

44、弧長計算公式:L=n兀R/180

45、扇形面積公式:

S扇形=n兀R2/360=LR/2

外公切線長=d-(R+r)

數(shù)學學習中常見問題分析

大部分同學在學習中或多或少的都會積累一些問題,這些問題平常我們可能不是很在意,那么到了初二后就會突顯出來。首先新生在學習數(shù)學的時候常遇到的就是對于學問點的理解不到位,還停留在一知半解的層次上面。有的同學在解答數(shù)學題的時候始終不能把握解題技巧,也就是說同學缺乏對待數(shù)學的舉一反三力量。

還有的同學在解答數(shù)學題時效率太低,無法再規(guī)定的時間內(nèi)完成解題,對于學校的考試節(jié)奏還沒方法適應。一些同學還沒有養(yǎng)成一個總結歸納的習慣,不會歸納學問點,不會歸納錯題。這些都是導致同學學不好數(shù)學的緣由。

正確對待考試

首先,應把主要精力放在基礎學問、基本技能、基本方法這三個方面上,由于每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,仔細思索,盡量讓自己理出頭緒,做完題后要總結歸納。調(diào)整好自己的心態(tài),使自己在任何時候冷靜,思路有條不紊,克服浮躁的心情。特殊是對自己要有信念,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論