2023屆浙江省臺州玉環(huán)重點中學(xué)中考數(shù)學(xué)模試卷含解析_第1頁
2023屆浙江省臺州玉環(huán)重點中學(xué)中考數(shù)學(xué)模試卷含解析_第2頁
2023屆浙江省臺州玉環(huán)重點中學(xué)中考數(shù)學(xué)模試卷含解析_第3頁
2023屆浙江省臺州玉環(huán)重點中學(xué)中考數(shù)學(xué)模試卷含解析_第4頁
2023屆浙江省臺州玉環(huán)重點中學(xué)中考數(shù)學(xué)模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,為的直徑,為上兩點,若,則的大小為().A.60° B.50° C.40° D.20°2.在0.3,﹣3,0,﹣這四個數(shù)中,最大的是()A.0.3 B.﹣3 C.0 D.﹣3.下列運算正確的是()A.a(chǎn)?a2=a2 B.(ab)2=ab C.3﹣1= D.4.sin45°的值等于()A. B.1 C. D.5.計算(-ab2)3÷(-ab)2的結(jié)果是()A.a(chǎn)b4B.-ab4C.a(chǎn)b3D.-ab36.計算﹣8+3的結(jié)果是()A.﹣11 B.﹣5 C.5 D.117.如圖,有一些點組成形如四邊形的圖案,每條“邊”(包括頂點)有n(n>1)個點.當(dāng)n=2018時,這個圖形總的點數(shù)S為()A.8064 B.8067 C.8068 D.80728.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.9.不等式4-2x>0的解集在數(shù)軸上表示為()A. B. C. D.10.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值2二、填空題(共7小題,每小題3分,滿分21分)11.已知(x-ay)(x+ay),那么a=_______12.已知兩圓相切,它們的圓心距為3,一個圓的半徑是4,那么另一個圓的半徑是_______.13.正多邊形的一個外角是,則這個多邊形的內(nèi)角和的度數(shù)是___________________.14.現(xiàn)在網(wǎng)購越來越多地成為人們的一種消費方式,天貓和淘寶的支付交易額突破67000000000元,將67000000000元用科學(xué)記數(shù)法表示為_____.15.三角形的每條邊的長都是方程的根,則三角形的周長是.16.如圖,直線l1∥l2,則∠1+∠2=____.17.函數(shù)的自變量x的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標(biāo)系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標(biāo)為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結(jié)束,且速度均為1cm/s,設(shè)運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設(shè)△AEQ的面積為S,求S與t的函數(shù)關(guān)系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當(dāng)△AEQ的面積最大時,平面內(nèi)是否存在一點P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請直接寫出P坐標(biāo),若不存在請說明理由?19.(5分)如圖,AC是的直徑,點B是內(nèi)一點,且,連結(jié)BO并延長線交于點D,過點C作的切線CE,且BC平分.求證:;若的直徑長8,,求BE的長.20.(8分)如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達(dá)E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠(yuǎn)?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.(10分)某數(shù)學(xué)興趣小組為測量如圖(①所示的一段古城墻的高度,設(shè)計用平面鏡測量的示意圖如圖②所示,點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計):請你設(shè)計一個測量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計算過程:③給出的方案不能用到圖②的方法.22.(10分)請根據(jù)圖中提供的信息,回答下列問題:(1)一個水瓶與一個水杯分別是多少元?(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)23.(12分)如圖,在四邊形中,為一條對角線,,,.為的中點,連結(jié).(1)求證:四邊形為菱形;(2)連結(jié),若平分,,求的長.24.(14分)如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點.分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;過點B作BC⊥x軸,垂足為點C,連接AC,求△ACB的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)題意連接AD,再根據(jù)同弧的圓周角相等,即可計算的的大小.【詳解】解:連接,∵為的直徑,∴.∵,∴,∴.故選:B.【點睛】本題主要考查圓弧的性質(zhì),同弧的圓周角相等,這是考試的重點,應(yīng)當(dāng)熟練掌握.2、A【解析】

根據(jù)正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù),比較即可【詳解】∵-3<-<0<0.3∴最大為0.3故選A.【點睛】本題考查實數(shù)比較大小,解題的關(guān)鍵是正確理解正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù),本題屬于基礎(chǔ)題型.3、C【解析】

根據(jù)同底數(shù)冪的乘法法則對A進行判斷;根據(jù)積的乘方對B進行判斷;根據(jù)負(fù)整數(shù)指數(shù)冪的意義對C進行判斷;根據(jù)二次根式的加減法對D進行判斷.【詳解】解:A、原式=a3,所以A選項錯誤;B、原式=a2b2,所以B選項錯誤;C、原式=,所以C選項正確;D、原式=2,所以D選項錯誤.故選:C.【點睛】本題考查了二次根式的加減法:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數(shù)相同的二次根式進行合并,合并方法為系數(shù)相加減,根式不變.也考查了整式的運算.4、D【解析】

根據(jù)特殊角的三角函數(shù)值得出即可.【詳解】解:sin45°=,故選:D.【點睛】本題考查了特殊角的三角函數(shù)的應(yīng)用,能熟記特殊角的三角函數(shù)值是解此題的關(guān)鍵,難度適中.5、B【解析】根據(jù)積的乘方的運算法則,先分別計算積的乘方,然后再根據(jù)單項式除法法則進行計算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故選B.6、B【解析】

絕對值不等的異號加法,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值.互為相反數(shù)的兩個數(shù)相加得1.依此即可求解.【詳解】解:?8+3=?2.故選B.【點睛】考查了有理數(shù)的加法,在進行有理數(shù)加法運算時,首先判斷兩個加數(shù)的符號:是同號還是異號,是否有1.從而確定用那一條法則.在應(yīng)用過程中,要牢記“先符號,后絕對值”.7、C【解析】分析:本題重點注意各個頂點同時在兩條邊上,計算點的個數(shù)時,不要把頂點重復(fù)計算了.詳解:此題中要計算點的個數(shù),可以類似周長的計算方法進行,但應(yīng)注意各個頂點重復(fù)了一次.如當(dāng)n=2時,共有S2=4×2﹣4=4;當(dāng)n=3時,共有S3=4×3﹣4,…,依此類推,即Sn=4n﹣4,當(dāng)n=2018時,S2018=4×2018﹣4=1.故選C.點睛:本題考查了圖形的變化類問題,關(guān)鍵是通過歸納與總結(jié),得到其中的規(guī)律.8、A【解析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內(nèi)切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.9、D【解析】

根據(jù)解一元一次不等式基本步驟:移項、系數(shù)化為1可得.【詳解】移項,得:-2x>-4,

系數(shù)化為1,得:x<2,

故選D.【點睛】考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負(fù)數(shù)不等號方向要改變.10、D【解析】設(shè)拋物線與x軸的兩交點間的橫坐標(biāo)分別為:x1,x2,

由韋達(dá)定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、±4【解析】

根據(jù)平方差公式展開左邊即可得出答案.【詳解】∵(x-ay)(x+ay)=又(x-ay)(x+ay)∴解得:a=±4故答案為:±4.【點睛】本題考查的平方差公式:.12、1或1【解析】

由兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,即可知這兩圓內(nèi)切,然后分別從若大圓的半徑為4與若小圓的半徑為4去分析,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系即可求得另一個圓的半徑.【詳解】∵兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,∴這兩圓內(nèi)切,∴若大圓的半徑為4,則另一個圓的半徑為:4-3=1,若小圓的半徑為4,則另一個圓的半徑為:4+3=1.故答案為:1或1【點睛】此題考查了圓與圓的位置關(guān)系.此題難度不大,解題的關(guān)鍵是注意掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系,注意分類討論思想的應(yīng)用.13、540°【解析】

根據(jù)多邊形的外角和為360°,因此可以求出多邊形的邊數(shù)為360°÷72°=5,根據(jù)多邊形的內(nèi)角和公式(n-2)·180°,可得(5-2)×180°=540°.考點:多邊形的內(nèi)角和與外角和14、【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】67000000000的小數(shù)點向左移動10位得到6.7,所以67000000000用科學(xué)記數(shù)法表示為,故答案為:.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.15、6或2或12【解析】

首先用因式分解法求得方程的根,再根據(jù)三角形的每條邊的長都是方程的根,進行分情況計算.【詳解】由方程,得=2或1.當(dāng)三角形的三邊是2,2,2時,則周長是6;當(dāng)三角形的三邊是1,1,1時,則周長是12;當(dāng)三角形的三邊長是2,2,1時,2+2=1,不符合三角形的三邊關(guān)系,應(yīng)舍去;當(dāng)三角形的三邊是1,1,2時,則三角形的周長是1+1+2=2.綜上所述此三角形的周長是6或12或2.16、30°【解析】

分別過A、B作l1的平行線AC和BD,則可知AC∥BD∥l1∥l2,再利用平行線的性質(zhì)求得答案.【詳解】如圖,分別過A、B作l1的平行線AC和BD,∵l1∥l2,∴AC∥BD∥l1∥l2,∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案為30°.【點睛】本題主要考查平行線的性質(zhì)和判定,掌握平行線的性質(zhì)和判定是解題的關(guān)鍵,即①兩直線平行?同位角相等,②兩直線平行?內(nèi)錯角相等,③兩直線平行?同旁內(nèi)角互補.17、x≠1【解析】

根據(jù)分母不等于2列式計算即可得解.【詳解】由題意得,x-1≠2,解得x≠1.故答案為x≠1.【點睛】本題考查的知識點為:分式有意義,分母不為2.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)當(dāng)t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】

(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應(yīng)邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時Q的坐標(biāo)即可;(3)當(dāng)△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當(dāng)0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當(dāng)t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,當(dāng)AD為菱形的邊時,可得P1(3,0),P3(6,3),當(dāng)AD為對角線時,P2(0,3),綜上所述,滿足條件的點P坐標(biāo)為(3,0)或(6,3)或(0,3).【點睛】本題考查四邊形綜合題、等邊三角形的性質(zhì)和判定、菱形的判定和性質(zhì)、二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會構(gòu)建二次函數(shù)解決最值問題,學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.19、(1)證明見解析;(2).【解析】

先利用等腰三角形的性質(zhì)得到,利用切線的性質(zhì)得,則CE∥BD,然后證明得到BE=CE;作于F,如圖,在Rt△OBC中利用正弦定義得到BC=5,所以,然后在Rt△BEF中通過解直角三角形可求出BE的長.【詳解】證明:,,,是的切線,,,.平分,,,;解:作于F,如圖,

的直徑長8,.,,,,在中,設(shè),則,,即,解得,.故答案為(1)證明見解析;(2).【點睛】本題考查切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系簡記作:見切點,連半徑,見垂直也考查了解直角三角形.20、35km【解析】試題分析:如圖作CH⊥AD于H.設(shè)CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解決問題.試題解析:如圖,作CH⊥AD于H.設(shè)CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E處距離港口A有35km.21、(1)8m;(2)答案不唯一【解析】

(1)根據(jù)入射角等于反射角可得∠APB=∠CPD,由AB⊥BD、CD⊥BD可得到∠ABP=∠CDP=90°,從而可證得三角形相似,根據(jù)相似三角形的性質(zhì)列出比例式,即可求出CD的長.(2)設(shè)計成視角問題求古城墻的高度.【詳解】(1)解:由題意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴,∴CD==8.答:該古城墻的高度為8m(2)解:答案不唯一,如:如圖,在距這段古城墻底部am的E處,用高h(yuǎn)(m)的測角儀DE測得這段古城墻頂端A的仰角為α.即可測量這段古城墻AB的高度,過點D作DCAB于點C.在Rt△ACD中,∠ACD=90°,tanα=,∴AC=αtanα,∴AB=AC+BC=αtanα+h【點睛】本題考查相似三角形性質(zhì)的應(yīng)用.解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來解決問題.22、(1)一個水瓶40元,一個水杯是8元;(2)當(dāng)10<n<25時,選擇乙商場購買更合算.當(dāng)n>25時,選擇甲商場購買更合算.【解析】

(1)設(shè)一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;(2)計算出兩商場得費用,比較即可得到結(jié)果.【詳解】解:(1)設(shè)一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場所需費用為(40×5+8n)×80%=160+6.4n乙商場所需費用為5×40+(n﹣5×2)×8=120+8n則∵n>10,且n為整數(shù),∴160+6.4n﹣(120+8n)=40﹣1.6n討論:當(dāng)10<n<25時,40﹣1.6n>0,160+0.64n>120+8n,∴選擇乙商場購買更合算.當(dāng)n>25時,40﹣1.6n<0,即1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論