




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
品牌建設(shè)和上市推廣品牌診斷與規(guī)劃報(bào)告“XX”品牌診斷與規(guī)劃報(bào)告品牌建設(shè)和上市推廣品牌診斷與規(guī)劃報(bào)告要點(diǎn)1.為什么要品牌整合?2.品牌特性和品牌建設(shè)。3品牌規(guī)劃與品牌傳播。整合營(yíng)銷(xiāo)基本策略組合整合營(yíng)銷(xiāo)基本策略產(chǎn)品價(jià)格場(chǎng)推軟文策略策略略廣活開(kāi)發(fā)近年的高考試題明確以能力立意,側(cè)重考查學(xué)生的數(shù)學(xué)思想方法,因此培養(yǎng)學(xué)生應(yīng)用函數(shù)思想解決問(wèn)題則顯得更為重要。由于函數(shù)思想分散于中學(xué)數(shù)學(xué)的各個(gè)分支中,因而必須寓函數(shù)思想于平時(shí)的教學(xué)中,下面將分類(lèi)說(shuō)明函數(shù)思想的作用。1方程和不等式中的函數(shù)思想由于方程或不等式與函數(shù)是相互聯(lián)系的,在一定的條件下可互相轉(zhuǎn)化,因而二者為函數(shù)思想的應(yīng)用提供了廣闊的空間。1.1方程中的函數(shù)思想例1已知方程(x-2k)2=ax(k∈N),在區(qū)間[2k-1,2k+1]上有兩個(gè)不等的實(shí)根,求a的取值范圍。分析:本題屬于根的分布問(wèn)題,若直接解答其過(guò)程非常繁瑣,如我們變換一個(gè)角度,從函數(shù)思想出發(fā),把方程的兩邊各看成一個(gè)函數(shù),f(x)=(x-2k)2,g(x)=ax,x∈[2k-1,2k+1],(k∈N),則方程的解轉(zhuǎn)化為兩個(gè)函數(shù)在同一坐標(biāo)系中的交點(diǎn)的橫坐標(biāo),因此原方程在[2k-1,2k+1]上有兩個(gè)不等的實(shí)根等價(jià)于兩圖象在[2k-1,2k+1]上有兩個(gè)不同的交點(diǎn),而a的取值范圍則等價(jià)于直線l的斜率,至此問(wèn)題得以解決。1.2不等式中的函數(shù)思想例2求使2x-1>m(x2-1)對(duì)滿(mǎn)足|m|≤2的一切實(shí)數(shù)m恒成立,求x的取值范圍。分析:本題為恒成立問(wèn)題,且對(duì)參數(shù)m有所限制,如我們把不等式加以變形,看成一個(gè)函數(shù),f(x)=(x2-1)m-(2x-1),(|m|≤2),則此問(wèn)題轉(zhuǎn)化為:f(m)<0對(duì)|m|≤2恒成立,以下用分類(lèi)討論的方法即可。2數(shù)列中的函數(shù)思想數(shù)列是一種特殊的函數(shù),運(yùn)用函數(shù)思想來(lái)解數(shù)列方面的題實(shí)質(zhì)上是將一靜態(tài)問(wèn)題放到動(dòng)態(tài)背景中加以考察。注意到等差數(shù)列、等比數(shù)列的通項(xiàng)公式及求和公式都可以看作n的函數(shù),所以運(yùn)用函數(shù)思想來(lái)解決數(shù)列問(wèn)題不僅能夯實(shí)基礎(chǔ),而且有助于學(xué)生創(chuàng)新思維能力的培養(yǎng)與提高。例3設(shè){an}是由正數(shù)組成的等比數(shù)列,sn是其前n項(xiàng)和,證明:3三角中的函數(shù)思想三角函數(shù)也是一種特殊的函數(shù),它除了具有一般的函數(shù)性質(zhì)外,還有其特殊之處,因此運(yùn)用函數(shù)思想來(lái)解題會(huì)使學(xué)生在加深理解的同時(shí),培養(yǎng)與提高其創(chuàng)新思想。例4如cos2θ+2msinθ-2m-2<0對(duì)任意θ恒成立,求m的取值范圍。分析:本題同為恒成立問(wèn)題,從表面看此題與例2并無(wú)多大的聯(lián)系,但我們同樣從函數(shù)思想出發(fā),則轉(zhuǎn)化為二次函數(shù)f(x)=x2-2mx+2m+1=(x-m)2+2m+1-m2在-1≤x≤1下求m的范圍問(wèn)題,與例2異曲同工。4向量中的函數(shù)思想向量作為數(shù)學(xué)中的一種工具,有其重要性。它的方向、模與數(shù)量積等很容易被遷移到函數(shù)問(wèn)題的情景之中,這樣在加深向量理解的同時(shí),也對(duì)函數(shù)思想的應(yīng)用進(jìn)一步深化。例5已知向量i=(1,0),j=(0,1),函數(shù)f(x)=ax4+bx2+c(a≠0)的圖象在y軸上的截距為1,在x=2處切線的方向向量為(a-c)i-12bj,并且函數(shù)當(dāng)x=1時(shí)取得極值。1)求f(x)解析式;2)求f(x)單調(diào)遞增區(qū)間;3)求f(x)極值。分析:本題為綜合題,它融合了向量、導(dǎo)數(shù)等多方面知識(shí),而1)的解決是問(wèn)題的關(guān)鍵。它要求出f(x)的解析式,需三個(gè)條件,在這三個(gè)條件中,第2個(gè)條件較為復(fù)雜,它使導(dǎo)數(shù)與向量達(dá)到完美的結(jié)合,因?yàn)?a-c)i-12bj=(a-c,-12b),所以切線的斜率為-12ba-1,從而f`(2)=-12ba-1,實(shí)現(xiàn)了向量與函數(shù)的轉(zhuǎn)化。5立體幾何中的函數(shù)思想立體幾何主要培養(yǎng)學(xué)生的空間想象能力,把空間的量與量之間的關(guān)系轉(zhuǎn)化為平面的能力,而近幾年高考立體幾何問(wèn)題很重視數(shù)學(xué)思想,對(duì)于有些立體幾何問(wèn)題,若能利用條件建立函數(shù)關(guān)系即可化難為易,化繁為簡(jiǎn)。例6已知ABCD是邊長(zhǎng)為4的正方形,E,F(xiàn)分別為AB,AD的中點(diǎn),GC垂直于ABCD所在平面且GC=2,求點(diǎn)B到平面EFG的距離。分析:本題直接用立體幾何知識(shí)也能解決,但涉及立體中多種知識(shí)及其綜合,使得解題過(guò)程繁雜。如從函數(shù)思想考慮,即可化難為易。6解析幾何中的函數(shù)思想解析幾何的特點(diǎn)就是用代數(shù)的方法研究幾何問(wèn)題,因此代數(shù)中方法可以遷移至解析幾何中,而函數(shù)思想作為代數(shù)中一種常用的思想,在解析中自然有其展示的空間,使得問(wèn)題簡(jiǎn)化。例7已知P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓x2+y2-2x-2y+1=0的兩切點(diǎn),A,B是切點(diǎn),C是圓心,那么四邊形PACB的面積最小值是。分析:對(duì)此題我們?yōu)槊鞔_圓在坐標(biāo)系中的位置,可把圓配方:(x-1)2+(y-1)2=1,如圖如設(shè)|PC|=d,由題意可列出S?┆?PACB關(guān)于PC=d函數(shù)式:S?┆?PACB=2,S?┆?APC=2×12×1×|PA|=|PC|2-1=d2-1,求函數(shù)的最小值得之??傊瘮?shù)思想是中學(xué)數(shù)學(xué)重要的思想,它不但把數(shù)學(xué)的各個(gè)分支緊緊地聯(lián)系在一起,而且能夠培養(yǎng)我們用聯(lián)系變化的觀點(diǎn)看待、分析、解決問(wèn)題的能力,因而函數(shù)思想的理解與應(yīng)用可以說(shuō)是提高學(xué)生綜合素質(zhì)的一個(gè)有效途徑。徐秀敏,女,河北玉田,本科學(xué)歷,河北省玉田縣第二中學(xué)高中數(shù)學(xué)教師。注:“本文中所涉及到的圖表、公式、注解等請(qǐng)以PDF格式閱讀”一、學(xué)會(huì)記筆記小學(xué)階段的數(shù)學(xué)學(xué)習(xí)相對(duì)來(lái)說(shuō)非常簡(jiǎn)單,內(nèi)容比較少,知識(shí)點(diǎn)的廣度和深度都十分有限。所以學(xué)生不需要借助筆記也可以將內(nèi)容都記住。但是到了初中階段,知識(shí)的廣度和深度都有所拓展,學(xué)生如果在這個(gè)階段還不知道如何記筆記的話(huà),那么日后的學(xué)習(xí)將會(huì)愈發(fā)吃力。所以,對(duì)于初中階段的學(xué)生來(lái)說(shuō),學(xué)會(huì)記筆記是首先需要掌握的能力。那么在數(shù)學(xué)知識(shí)比較繁雜的情況下,應(yīng)該如何記筆記呢?首先,可以按照教材的順序或者老師講解的順序進(jìn)行。教材對(duì)于知識(shí)的安排、設(shè)置一定是經(jīng)過(guò)充分論?C的,并且經(jīng)過(guò)多年的總結(jié)與調(diào)整,所以一定是比較合理的,也具有較強(qiáng)的科學(xué)性,會(huì)幫助學(xué)生更加系統(tǒng)地學(xué)習(xí)知識(shí)。教師也都是非常有經(jīng)驗(yàn)的,所以按照這個(gè)順序來(lái)講是比較合理的。其次,對(duì)于記錄的內(nèi)容,一定要記錄最凝練的內(nèi)容。對(duì)于涉及的一些數(shù)學(xué)概念,除非是極難理解或者非常重要,否則不要記在筆記上。記筆記應(yīng)該遵循一個(gè)最基本的原則,要追求“精”,而不是“泛”。教材本身就是最好的“泛讀”材料,向?qū)W生全面地展示了知識(shí)點(diǎn)的來(lái)龍去脈,但是我們?cè)趯W(xué)習(xí)的時(shí)候還是要抓住最主要的“矛盾”來(lái)學(xué)習(xí),只有首先弄清楚核心內(nèi)容,才能有機(jī)會(huì)去逐漸了解其更深層次的內(nèi)容。那么學(xué)生借助筆記可以首先明白最基本的知識(shí)內(nèi)容。最后,筆記記錄后要時(shí)常翻閱,而非束之高閣。否則記再多的筆記也沒(méi)有意義。所以,學(xué)生應(yīng)該掌握記筆記的方法,學(xué)會(huì)記錄筆記,為日后的學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ)。二、學(xué)會(huì)閱讀教材上文已經(jīng)提到,數(shù)學(xué)教材本身就是學(xué)生學(xué)習(xí)數(shù)學(xué)最好的泛讀課本。學(xué)生通過(guò)教材來(lái)學(xué)習(xí)之前沒(méi)有學(xué)過(guò)的知識(shí),一定得借助詳細(xì)的介紹和由淺入深的講解。數(shù)學(xué)教師在講新課的時(shí)候一定會(huì)將知識(shí)濃縮,以最簡(jiǎn)單、最精練的方式傳授給學(xué)生,然而老師對(duì)于知識(shí)再熟悉不過(guò),而學(xué)生對(duì)于新學(xué)的知識(shí)卻是完全陌生的。所以偶爾也會(huì)出現(xiàn)一些類(lèi)似于“信息不對(duì)稱(chēng)”的問(wèn)題,即老師認(rèn)為學(xué)生懂了,但實(shí)際上學(xué)生沒(méi)懂;或者老師認(rèn)為可以一筆帶過(guò)的內(nèi)容,學(xué)生卻需要反復(fù)琢磨。那么如何避免這種情況呢?最好的辦法就是提前預(yù)習(xí),提前讀教材。教材的科學(xué)性在上文已經(jīng)提及,在此不再贅述。教材最大的好處是對(duì)知識(shí)的介紹或講解非常詳細(xì),學(xué)生在閱讀后可以在很大程度上理解并且熟悉知識(shí)點(diǎn)。老師上課講過(guò)的沒(méi)有聽(tīng)懂的知識(shí)點(diǎn),自己思考可能需要花費(fèi)很長(zhǎng)時(shí)間,通過(guò)翻閱數(shù)學(xué)書(shū)也許就會(huì)豁然開(kāi)朗;或者在閱讀教材的過(guò)程中發(fā)現(xiàn)自己遺漏的但是很重要的知識(shí)點(diǎn)、發(fā)現(xiàn)了一種新的運(yùn)算方法、獲得了新的啟發(fā)。所以,老師和家長(zhǎng)總是在強(qiáng)調(diào)新課的預(yù)習(xí),實(shí)際上就是通過(guò)讓學(xué)生讀教材來(lái)提前學(xué)習(xí),課后讀教材來(lái)查漏補(bǔ)缺,配合習(xí)題的練習(xí),才能將知識(shí)最大限度、系統(tǒng)地掌握。三、注意培養(yǎng)數(shù)學(xué)思維不論學(xué)習(xí)什么學(xué)科,學(xué)習(xí)什么方面的知識(shí),思維的培養(yǎng)都是應(yīng)該放在第一位的。因?yàn)橹挥信囵B(yǎng)了學(xué)科的思維方式,才能正確認(rèn)識(shí)這門(mén)學(xué)科,并且對(duì)這門(mén)學(xué)科產(chǎn)生興趣。尤其是在學(xué)生的受教育階段,一定要重點(diǎn)培養(yǎng)。數(shù)學(xué)思維包括很多種,例如邏輯思維、抽象思維、頓悟思維等,其中學(xué)生比較了解的應(yīng)該是邏輯思維。實(shí)際上,在高中階段的文理分科,老師在給學(xué)生上課時(shí)就能明顯地感覺(jué)到,理科的學(xué)生邏輯思維是非常強(qiáng)的,尤其是在數(shù)學(xué)這門(mén)課上,更能直觀地反映出來(lái)。所以,學(xué)生在初中階段就應(yīng)該逐漸培養(yǎng)自己的邏輯思維,這樣可以培養(yǎng)對(duì)數(shù)學(xué)的興趣,并且更加輕松地學(xué)習(xí)。同時(shí),隨著數(shù)學(xué)知識(shí)的不斷積累,隨著數(shù)學(xué)理論與邏輯的不斷影響,邏輯思維能力也一定會(huì)逐漸增強(qiáng),二者是相互促進(jìn)的關(guān)系。老師在講課時(shí)總是會(huì)說(shuō)到思維要發(fā)散,思維不能太偏。實(shí)際上說(shuō)的是數(shù)學(xué)學(xué)習(xí)的模式思維,應(yīng)試教育體制下,要求學(xué)生不僅需要對(duì)知識(shí)進(jìn)行扎實(shí)穩(wěn)固的掌握,還要掌握考試的技巧。然而考試技巧實(shí)質(zhì)上就是數(shù)學(xué)思維的一種升華,需要學(xué)生不斷去練習(xí),不斷去考試,慢慢摸清楚考試中所表現(xiàn)出的數(shù)學(xué)的特點(diǎn),從而不斷調(diào)整自己的思考方式,逐漸適應(yīng)規(guī)則。這樣的思維一旦形成,那么在日后的學(xué)習(xí)中也會(huì)大有裨益,而且可以使學(xué)生在學(xué)習(xí)眾多其他學(xué)科時(shí)受益??傊?,初中一年級(jí)數(shù)學(xué)學(xué)習(xí)需要掌握以上三點(diǎn)方法。首先,要學(xué)會(huì)如何記筆記,按照一定順序,將知識(shí)的內(nèi)容凝練。第二,要學(xué)會(huì)通過(guò)閱讀教材來(lái)查漏補(bǔ)缺,并且系統(tǒng)地學(xué)習(xí)。最后,要有意識(shí)地培養(yǎng)思維方式,并且不斷調(diào)整,應(yīng)用到其他學(xué)科的學(xué)習(xí)中去。要點(diǎn)1.為什么要品牌整合?2.品牌特性和品牌建設(shè)。3品牌規(guī)劃與品牌傳播。整合營(yíng)銷(xiāo)基本策略組合整合營(yíng)銷(xiāo)基本策略產(chǎn)品價(jià)格場(chǎng)推軟文策略策略略廣活開(kāi)發(fā)品牌整合目的通過(guò)品牌的全面整合,樹(shù)立品牌的高端形象。通過(guò)對(duì)品牌核心價(jià)值的提煉,實(shí)施對(duì)目標(biāo)客戶(hù)心智資源的控制,從而獲得高端品牌的銷(xiāo)售增速。通過(guò)立體實(shí)效的傳播及推廣全面打開(kāi)市場(chǎng),并獲取品牌溢價(jià)能力品牌理念對(duì)技術(shù)創(chuàng)新和產(chǎn)品質(zhì)量的不懈追求釋義東宏”品牌的核心價(jià)值,是東宏在長(zhǎng)期激烈的市場(chǎng)竟?fàn)幹胁粩啾3趾吞嵘暮诵母?jìng)爭(zhēng)力,是東宏給予客戶(hù)乃至利益相關(guān)入永不動(dòng)搖的承諾,技術(shù)、質(zhì)量、創(chuàng)新就滲透在企業(yè)所有的行動(dòng)中營(yíng)銷(xiāo)理念先賣(mài)信譽(yù)后賣(mài)產(chǎn)品釋義:始終堅(jiān)持誠(chéng)信立業(yè)的企業(yè)精神,在市場(chǎng)營(yíng)銷(xiāo)中重視自身的信譽(yù)、重視產(chǎn)品的信譽(yù)、重視企業(yè)的信譽(yù)。要做到服務(wù)一批客戶(hù),宣傳一批品牌把客戶(hù)投訴率降至零服務(wù)理念零距離銷(xiāo)售高速度運(yùn)營(yíng)釋義零距離銷(xiāo)售,其本質(zhì)是心與心的零距離。只有企業(yè)同員工的心零距離員工才能同客戶(hù)的心零距離高速度運(yùn)營(yíng),就是要求當(dāng)客戶(hù)有需求時(shí),把困難留給自己,把方便讓給客戶(hù),在客戶(hù)需求的時(shí)限范圍內(nèi),高質(zhì)量、高服務(wù)地把產(chǎn)品供應(yīng)給客戶(hù),讓客戶(hù)最大化的滿(mǎn)意并超出其期望值。質(zhì)量理念質(zhì)量與價(jià)值同在品質(zhì)和品牌共生釋義百年大計(jì),質(zhì)量為本;一個(gè)企業(yè)的產(chǎn)品質(zhì)量既能決定企業(yè)的命運(yùn),又能代表企業(yè)的品德?!百|(zhì)量”是企業(yè)生存的必要條件,也是東宏經(jīng)營(yíng)管理不容突破的底線?!百|(zhì)量必要”更是東宏文化中最深厚的底蘊(yùn)。我們把產(chǎn)品的質(zhì)量與品質(zhì),與員工的個(gè)人價(jià)值聯(lián)系起來(lái),要將“產(chǎn)品體現(xiàn)人品”和“精品人品同在”的思想滲透到員工價(jià)值觀念之中,延伸到員工一切工作和行為之中,積極培育員工不斷超越、盡善盡美的人格追求。管理理念溝通共識(shí)人和高效釋義我們來(lái)自五湖四海,有著不同的經(jīng)歷和不同的愛(ài)好,但是我們擁有共同的事業(yè)和共同的群體。當(dāng)我們?yōu)榱斯餐睦砟疃嗑劢M成東宏這個(gè)團(tuán)隊(duì)的時(shí)候,我們就要讓我們內(nèi)部的每一項(xiàng)工作都有一個(gè)統(tǒng)一的理念進(jìn)行指導(dǎo),每一項(xiàng)事物都有一個(gè)統(tǒng)一的價(jià)值判斷標(biāo)準(zhǔn),每一個(gè)人
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 打字翻譯面試題及答案
- 和諧家庭面試題及答案
- 電氣電焊考試題及答案
- 河南期貨面試題及答案
- 創(chuàng)意制作考試題及答案
- 健康消費(fèi)面試題及答案
- 高智商考試題及答案
- 基層服務(wù)面試題及答案
- 定向考試面試題及答案
- 人的管理課件圖片
- (2.6.1)-1-5使蜂鳴器鳴叫
- GB/T 4648-1996滾動(dòng)軸承圓錐滾子軸承凸緣外圈外形尺寸
- GB/T 34440-2017硬質(zhì)聚氯乙烯地板
- 員工調(diào)令模板
- 不典型平滑肌瘤MR表現(xiàn)
- 糖尿病病歷模板共享
- 《杜鵑圓舞曲》集體備課教案
- 刑事辯護(hù)技巧與經(jīng)驗(yàn)演示文稿
- 會(huì)計(jì)專(zhuān)業(yè)工作簡(jiǎn)歷表(中級(jí))
- 金融科技課件(完整版)
- 利用與非門(mén)或異或門(mén)構(gòu)成全加器
評(píng)論
0/150
提交評(píng)論