高中數(shù)學(xué)-《正弦定理》教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思_第1頁
高中數(shù)學(xué)-《正弦定理》教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思_第2頁
高中數(shù)學(xué)-《正弦定理》教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思_第3頁
高中數(shù)學(xué)-《正弦定理》教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思_第4頁
高中數(shù)學(xué)-《正弦定理》教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1.讓學(xué)生從已有的幾何知識(shí)出發(fā),通過對任意三角形邊角關(guān)系的探索,共同探究在任意三角形中,邊與其對角的關(guān)系,引導(dǎo)學(xué)生通過觀察,實(shí)驗(yàn),猜想,驗(yàn)證,證明,由特殊到一般歸納出正弦定理,掌握正弦定理的內(nèi)容及其證明方法,理解三角形面積公式,并學(xué)會(huì)運(yùn)用正弦定理解決解斜三角形的兩類基本問題。

2.通過對實(shí)際問題的探索,培養(yǎng)學(xué)生觀察問題、提出問題、分析問題、解決問題的能力,增強(qiáng)學(xué)生的協(xié)作能力和交流能力,發(fā)展學(xué)生的創(chuàng)新意識(shí),培養(yǎng)創(chuàng)造性思維的能力。

3.通過學(xué)生自主探索、合作交流,親身體驗(yàn)數(shù)學(xué)規(guī)律的發(fā)現(xiàn),培養(yǎng)學(xué)生勇于探索、善于發(fā)現(xiàn)、不畏艱辛的創(chuàng)新品質(zhì),增強(qiáng)學(xué)習(xí)的成功心理,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

4.培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。

教學(xué)難點(diǎn):正弦定理的猜想提出過程。本節(jié)內(nèi)容安排在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書?數(shù)學(xué)必修5》(人教a版)第一章,正弦定理第一課時(shí),是在高二學(xué)生學(xué)習(xí)了三角等知識(shí)之后,顯然是對三角知識(shí)的應(yīng)用;同時(shí),作為三角形中的一個(gè)定理,也是對初中解直角三角形內(nèi)容的直接延伸,因而定理本身的應(yīng)用又十分廣泛。

根據(jù)實(shí)際教學(xué)處理,正弦定理這部分內(nèi)容共分為三個(gè)層次:第一層次教師通過引導(dǎo)學(xué)生對實(shí)際問題的探索,并大膽提出猜想;第二層次由猜想入手,帶著疑問,以及特殊三角形中邊角的關(guān)系的驗(yàn)證,通過“作高法”等多種方法證明正弦定理,驗(yàn)證猜想的正確性;第三層次利用正弦定理解決引例,最后進(jìn)行簡單的應(yīng)用。學(xué)生通過對任意三角形中正弦定理的探索、發(fā)現(xiàn)和證明,感受“觀察——實(shí)驗(yàn)——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。對普高高二的學(xué)生來說,已學(xué)的平面幾何,解直角三角形,三角函數(shù),向量等知識(shí),有一定觀察分析、解決問題的能力,但對前后知識(shí)間的聯(lián)系、理解、應(yīng)用有一定難度,因此思維靈活性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,多加以前后知識(shí)間的聯(lián)系,帶領(lǐng)學(xué)生直接參與分析問題、解決問題并品嘗勞動(dòng)成果的喜悅。復(fù)習(xí)回顧1同一三角形中邊、角之間的關(guān)系有哪些?2思考:若一邊比另一邊大2個(gè)單位,那么相對應(yīng)的角大了多少呢?能否得到邊角準(zhǔn)確的量化關(guān)系呢?新課導(dǎo)學(xué)在初中,我們已學(xué)過如何解直角三角形,下面就首先來探討直角三角形中,角與邊的等式關(guān)系。如圖1.1-2,在RtABC中,設(shè)BC=a,AC=b,AB=c,根據(jù)直角三角函數(shù)中正弦函數(shù)的定義,有,,又,A則bc從而在直角三角形ABC中,CaB(圖1.1-2)思考:那么對于任意的三角形,以上關(guān)系式是否仍然成立?可分為銳角三角形和鈍角三角形兩種情況:如圖1.1-3,當(dāng)ABC是銳角三角形時(shí),設(shè)邊AB上的高是CD,根據(jù)任意角三角函數(shù)的定義,有CD=,則,C同理可得,ba從而AcB(圖1.1-3)類似可推出,當(dāng)ABC是鈍角三角形時(shí),以上關(guān)系式仍然成立。從上面的研探過程,可得以下定理正弦定理:在一個(gè)三角形中,各邊和它所對角的正弦的比相等,即[理解定理]等價(jià)于,,從而知正弦定理的基本作用為:①已知三角形的任意兩角及其一邊可以求其他邊,如;②已知三角形的任意兩邊與其中一邊的對角可以求其他角的正弦值,如。解三角形:一般地,已知三角形的某些邊和角,求其他的邊和角的過程叫作解三角形。[例題分析]例1.在中,已知,,cm,解三角形。練習(xí)一:評述:應(yīng)注意已知兩邊和其中一邊的對角解三角形時(shí),可能有兩解的情形。變一變:例2中的已知條件分別給成以下條件,求B課堂小結(jié):(由學(xué)生歸納總結(jié))(1)定理的表示形式:;(2)正弦定理的應(yīng)用范圍:①已知兩角和任一邊,求其它兩邊及一角;②已知兩邊和其中一邊對角,求另一邊的對角。課后作業(yè):第10頁[習(xí)題1.1]A組第1、2題。檢測評價(jià):1.在△ABC中,已知a=8,B=60°,C=75°,則b等于()A.4eq\r(2)B.4eq\r(3)C.4eq\r(6)D.eq\f(32,3)2.在△ABC中,角A、B、C所對的邊分別為a、b、c,如果c=eq\r(3)a,B=30°,那么角C等于()A.120°B.105°C.90°D.75°3.在△ABC中,已知a=18,b=16,A=150°,則這個(gè)三角形解的情況是()A.有兩個(gè)解B.有一個(gè)解C.無解D.不能確定4.在△ABC中,若,則與的大小關(guān)系為().A.B.C.≥D.、的大小關(guān)系不能確定5.已知ABC中,A,,則=.6.在△ABC中,AC=eq\r(6),BC=2,∠B=60°,則C=________.7.已知△ABC中,c=6,A=30°,B=,解此三角形.8.已知ΔABC,a=3,b=,A=600,解三角形:本課之前學(xué)生已學(xué)習(xí)過三角函數(shù),平面幾何,平面向量等與本課緊密聯(lián)系的內(nèi)容,學(xué)生基本都能夠理解和掌握正弦定理的推導(dǎo)及證明過程,但在定理的應(yīng)用上存在問題,尤其是已知兩邊一角解三角形時(shí),很多學(xué)生不會(huì)分析解的情況。本節(jié)課是典型合作探究課,教師先設(shè)計(jì)一個(gè)實(shí)際問題引導(dǎo)學(xué)生討論問題解決方案,將方案數(shù)學(xué)化,歸納出一類數(shù)學(xué)問題“在三角形中,已知兩邊和其中一邊的對角,求另一邊的對角和第三邊”,順利地引入新課,實(shí)現(xiàn)了從“現(xiàn)象”到“本質(zhì)”的飛躍,培養(yǎng)了學(xué)生提出問題、分析問題、數(shù)學(xué)建模的能力。為尋求解決問題的普遍方法,對三角形的邊角關(guān)系進(jìn)行探索,在特殊情況(直角三角形)下得到正弦定理,又在等邊三角形和一般三角形中驗(yàn)證,堅(jiān)定了結(jié)論成立的猜想,最后通過嚴(yán)格證明,得到了正弦定理,再返回到前面的引例中,利用正弦定理問題迎仞而解。從而使學(xué)生親身經(jīng)歷了“情境思考”—“提出問題”—“研究特例”—“歸納猜想”—“實(shí)驗(yàn)探究”—“理論探究”—“解決問題”—“反思總結(jié)”的歷程,學(xué)會(huì)研究數(shù)學(xué)問題的方法,學(xué)生成為正弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的苦和樂。為了使學(xué)生真正成為提出問題和解決問題的主體,成為知識(shí)的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學(xué)過程成為學(xué)生主動(dòng)獲取知識(shí)、發(fā)展能力、體驗(yàn)數(shù)學(xué)的過程。我想到了“情境——問題”教學(xué)模式,即構(gòu)建一個(gè)以情境為基礎(chǔ),提出問題與解決問題相互引發(fā)攜手并進(jìn)的“情境——問題”學(xué)習(xí)鏈,并根據(jù)上述精神,結(jié)合教學(xué)內(nèi)容,具體做出了如下設(shè)計(jì):①創(chuàng)設(shè)一個(gè)現(xiàn)實(shí)問題情境作為提出問題的背景(②啟發(fā)、引導(dǎo)學(xué)生提出自己關(guān)心的現(xiàn)實(shí)問題,逐步將現(xiàn)實(shí)問題轉(zhuǎn)化、抽象成過渡性數(shù)學(xué)問題,解決過渡性問題4與5時(shí)需要使用正弦定理,借此引發(fā)學(xué)生的認(rèn)知沖突,揭示解斜三角形的必要性,并使學(xué)生產(chǎn)生進(jìn)一步探索解決問題的動(dòng)機(jī)。然后引導(dǎo)學(xué)生抓住問題的數(shù)學(xué)實(shí)質(zhì),將過渡性問題引伸成一般的數(shù)學(xué)問題:已知三角形的兩條邊和一邊的對角,求另一邊的對角及第三邊。解決這兩個(gè)問題需要先回答目標(biāo)問題:在三角形中,兩邊與它們的對角之間有怎樣的關(guān)系?③為了解決提出的目標(biāo)問題,引導(dǎo)學(xué)生回到他們所熟悉的直角三角形中,得出目標(biāo)問題在直角三角形中的解,從而形成猜想,然后使用幾何畫板

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論