![2021-2022學(xué)年江西省上饒市鄱陽第一中學(xué)高二數(shù)學(xué)理聯(lián)考試題含解析_第1頁](http://file4.renrendoc.com/view/e9cf031497774512f1ca70cb52201793/e9cf031497774512f1ca70cb522017931.gif)
![2021-2022學(xué)年江西省上饒市鄱陽第一中學(xué)高二數(shù)學(xué)理聯(lián)考試題含解析_第2頁](http://file4.renrendoc.com/view/e9cf031497774512f1ca70cb52201793/e9cf031497774512f1ca70cb522017932.gif)
![2021-2022學(xué)年江西省上饒市鄱陽第一中學(xué)高二數(shù)學(xué)理聯(lián)考試題含解析_第3頁](http://file4.renrendoc.com/view/e9cf031497774512f1ca70cb52201793/e9cf031497774512f1ca70cb522017933.gif)
![2021-2022學(xué)年江西省上饒市鄱陽第一中學(xué)高二數(shù)學(xué)理聯(lián)考試題含解析_第4頁](http://file4.renrendoc.com/view/e9cf031497774512f1ca70cb52201793/e9cf031497774512f1ca70cb522017934.gif)
![2021-2022學(xué)年江西省上饒市鄱陽第一中學(xué)高二數(shù)學(xué)理聯(lián)考試題含解析_第5頁](http://file4.renrendoc.com/view/e9cf031497774512f1ca70cb52201793/e9cf031497774512f1ca70cb522017935.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022學(xué)年江西省上饒市鄱陽第一中學(xué)高二數(shù)學(xué)理聯(lián)考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.給出以下一個(gè)算法的程序框圖(如圖所示):
該程序框圖的功能是(
)A.求出a,b,c三數(shù)中的最大數(shù)
B.求出a,b,c三數(shù)中的最小數(shù)C.將a,b,c按從小到大排列
D.將a,b,c按從大到小排列參考答案:B2.若實(shí)數(shù)x,滿足不等式組則z=|x|+2的最大值是(
)A.10
B.11
C.13
D.14參考答案:D略3.如圖,一個(gè)幾何體的三視圖,側(cè)視圖和正視圖均為矩形,俯視圖為正三角形,尺寸如圖,則該幾何體的體積為(
) A.18 B. C. D.參考答案:C4.如下圖,該程序運(yùn)行后輸出的結(jié)果為(
)A.36
B.56
C.55
D.45參考答案:D5.在△ABC中,a=2,b=,A=,則B=(
)A.
B.
C.
D.參考答案:B6.若直線與曲線的圖象有兩個(gè)不同交點(diǎn),則實(shí)數(shù)的取值范圍為(
)A.()
B.
C.
D.參考答案:B7.不等式的解集為,那么
(
)A.
B.
C.
D.參考答案:A8.已知函數(shù)的圖象如圖1所示(其中是函數(shù)的導(dǎo)函數(shù)),下面四個(gè)圖象中圖象大致為()
參考答案:C略9.不等式x(3﹣x)≥0的解集是()A.{x|x≤0或x≥3} B.{x|0≤x≤3} C.{x|x≥3} D.{x|x≤3}參考答案:B【考點(diǎn)】一元二次不等式的解法.【分析】把不等式x(3﹣x)≥0化為x(x﹣3)≤0,寫出解集即可.【解答】解:不等式x(3﹣x)≥0可化為x(x﹣3)≤0,解得0≤x≤3∴不等式的解集是{x|0≤x≤3}.故選:B.10.已知一個(gè)流程圖如右圖所示,若輸入n=6,則該程序運(yùn)行的結(jié)果是(
)A.4
B.3
C.2
D.1參考答案:B略二、填空題:本大題共7小題,每小題4分,共28分11.為真命題,則a的取值范圍是____▲______.參考答案:
12.若函數(shù)存在單調(diào)遞增區(qū)間,則a的取值范圍是___.參考答案:【分析】將題意轉(zhuǎn)化為:,使得,利用參變量分離得到,轉(zhuǎn)化為,結(jié)合導(dǎo)數(shù)求解即可?!驹斀狻浚渲?,則。由于函數(shù)存在單調(diào)遞增區(qū)間,則,使得,即,,構(gòu)造函數(shù),則。,令,得。當(dāng)時(shí),;當(dāng)時(shí),所以,函數(shù)在處取得極小值,亦即最小值,則,所以,,故答案為:?!军c(diǎn)睛】本題考查函數(shù)的單調(diào)性與導(dǎo)數(shù),一般來講,函數(shù)的單調(diào)性可以有如下的轉(zhuǎn)化:(1)函數(shù)在區(qū)間上單調(diào)遞增,;(2)函數(shù)在區(qū)間上單調(diào)遞減,;(3)函數(shù)在區(qū)間上存在單調(diào)遞增區(qū)間,;(4)函數(shù)在區(qū)間上存在單調(diào)遞減區(qū)間,;(5)函數(shù)在區(qū)間上不單調(diào)函數(shù)在區(qū)間內(nèi)存在極值點(diǎn)。13.若的二項(xiàng)展開式中的第3項(xiàng)的二項(xiàng)式系數(shù)為15,則的展開式中含項(xiàng)的系數(shù)為
.參考答案:160由二項(xiàng)式定理,的二項(xiàng)展開式中的第3項(xiàng)的二項(xiàng)式系數(shù)為,∴有,解得.則有,當(dāng)時(shí),得,∴的展開式中含x3項(xiàng)的系數(shù)為160.
14.在△ABC中,,三邊長a,b,c成等差數(shù)列,且ac=6,則b的值是
.參考答案:15.用反證法證明某命題時(shí),對(duì)結(jié)論:“自然數(shù)中恰有一個(gè)偶數(shù)”正確的反設(shè)為
參考答案:中至少有兩個(gè)偶數(shù)或都是奇數(shù)略16.在正項(xiàng)等比數(shù)列中,為方程的兩根,則等于
.參考答案:64略17.某校老年、中年和青年教師的人數(shù)見如表,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有320人,則該樣本的老年教師人數(shù)為______.類別老年教師中年教師青年教師合計(jì)人數(shù)900180016004300參考答案:180.試題分析:由題意,總體中青年教師與老年教師比例為;設(shè)樣本中老年教師的人數(shù)為x,由分層抽樣的性質(zhì)可得總體與樣本中青年教師與老年教師的比例相等,即,解得.故答案為:.考點(diǎn):分層抽樣.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本題滿分15分)設(shè)函數(shù),,.(Ⅰ)若,求的單調(diào)遞增區(qū)間;(Ⅱ)若曲線與軸相切于異于原點(diǎn)的一點(diǎn),且的極小值為,求的值.參考答案:(Ⅰ)①當(dāng)時(shí),的單調(diào)遞增區(qū)間為;②當(dāng)時(shí),的單調(diào)遞增區(qū)間為;(Ⅱ),依據(jù)題意得:,且
①
……9分,得或
.……11分因?yàn)?,所以極小值為,
∴且,得,…13分代入①式得,.
…………15分
考點(diǎn):1.函數(shù)的導(dǎo)數(shù);2.函數(shù)導(dǎo)數(shù)的性質(zhì)的應(yīng)用;3.函數(shù)的極值和方程思想.19.已知函數(shù).(1)當(dāng)時(shí),求f(x)在x=0處的切線方程;(2)函數(shù)f(x)是否存在零點(diǎn),若存在,求出零點(diǎn)的個(gè)數(shù);若不存在,說明理由.參考答案:【考點(diǎn)】6H:利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;51:函數(shù)的零點(diǎn).【分析】(1)欲求曲線y=f(x)在其上一點(diǎn)x=0處的切線的方程,只須求出切線斜率,切點(diǎn)坐標(biāo)即可,故先利用導(dǎo)數(shù)求出在x=0處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率,利用函數(shù)求出切點(diǎn)坐標(biāo),進(jìn)而得切線方程;(2)由于函數(shù)f(x)的定義域?yàn)椋ī仭?,a)∪(a,+∞).下面對(duì)x的范圍進(jìn)行分類討論:當(dāng)x∈(a,+∞)時(shí),f(x)在區(qū)間(a,+∞)上沒有零點(diǎn).當(dāng)x∈(﹣∞,a)時(shí),令g(x)=ex(x﹣a)+1.構(gòu)造新函數(shù),對(duì)新函數(shù)求導(dǎo),做出函數(shù)的單調(diào)性,得到函數(shù)的最小值,從而得到要求的結(jié)果.【解答】解:(Ⅰ),,.當(dāng)時(shí),f'(0)=﹣3.又f(0)=﹣1.
…..則f(x)在x=0處的切線方程為y=﹣3x﹣1.
…..(Ⅱ)函數(shù)f(x)的定義域?yàn)椋ī仭蓿琣)∪(a,+∞).當(dāng)x∈(a,+∞)時(shí),,所以.即f(x)在區(qū)間(a,+∞)上沒有零點(diǎn).
…..當(dāng)x∈(﹣∞,a)時(shí),,令g(x)=ex(x﹣a)+1.
…只要討論g(x)的零點(diǎn)即可.g'(x)=ex(x﹣a+1),g'(a﹣1)=0.當(dāng)x∈(﹣∞,a﹣1)時(shí),g'(x)<0,g(x)是減函數(shù);當(dāng)x∈(a﹣1,a)時(shí),g'(x)>0,g(x)是增函數(shù).所以g(x)在區(qū)間(﹣∞,a)最小值為g(a﹣1)=1﹣ea﹣1.
…..顯然,當(dāng)a=1時(shí),g(a﹣1)=0,所以x=a﹣1是f(x)的唯一的零點(diǎn);當(dāng)a<1時(shí),g(a﹣1)=1﹣ea﹣1>0,所以f(x)沒有零點(diǎn);當(dāng)a>1時(shí),g(a﹣1)=1﹣ea﹣1<0,所以f(x)有兩個(gè)零點(diǎn).
…..20.(1)解關(guān)于x不等式(2)若函數(shù)的定義域?yàn)镽,求實(shí)數(shù)k的取值范圍。參考答案:(1);(2)[0,1]【分析】(1)根據(jù)分式不等式的解法進(jìn)行求解即可.(2)根據(jù)f(x)的定義域?yàn)镽,從而得出不等式kx2﹣6kx+k+8≥0的解集為R,從而可討論k:k=0時(shí),顯然滿足條件;k≠0時(shí),可得出,解出k的范圍即可.【詳解】(1)由得即,或,得或,得或,即不等式的解集為.(2)∵f(x)的定義域?yàn)镽;∴不等式kx2﹣6kx+k+8≥0的解集為R;①k=0時(shí),8>0恒成立,滿足題意;②k≠0時(shí),則;解得0<k≤1;綜上得,實(shí)數(shù)k的取值范圍為[0,1].【點(diǎn)睛】本題主要考查不等式的求解,結(jié)合分式不等式的解法是解決本題的關(guān)鍵.21.如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).(Ⅰ)證明:BE⊥DC;(Ⅱ)求直線BE與平面PBD所成角的正弦值;(Ⅲ)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.參考答案:【考點(diǎn)】與二面角有關(guān)的立體幾何綜合題;直線與平面所成的角.【分析】(I)以A為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,求出BE,DC的方向向量,根據(jù)?=0,可得BE⊥DC;(II)求出平面PBD的一個(gè)法向量,代入向量夾角公式,可得直線BE與平面PBD所成角的正弦值;(Ⅲ)根據(jù)BF⊥AC,求出向量的坐標(biāo),進(jìn)而求出平面FAB和平面ABP的法向量,代入向量夾角公式,可得二面角F﹣AB﹣P的余弦值.【解答】證明:(I)∵PA⊥底面ABCD,AD⊥AB,以A為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,∵AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)∴=(0,1,1),=(2,0,0)∵?=0,∴BE⊥DC;(Ⅱ)∵=(﹣1,2,0),=(1,0,﹣2),設(shè)平面PBD的法向量=(x,y,z),由,得,令y=1,則=(2,1,1),則直線BE與平面PBD所成角θ滿足:sinθ===,故直線BE與平面PBD所成角的正弦值為.(Ⅲ)∵=(1,2,0),=(﹣2,﹣2,2),=(2,2,0),由F點(diǎn)在棱PC上,設(shè)=λ=(﹣2λ,﹣2λ,2λ)(0≤λ≤1),故=+=(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1),由BF⊥AC,得?=2(1﹣2λ)+2(2﹣2λ)=0,解得λ=,即=(﹣,,),設(shè)平面FBA的法向量為=(a,b,c),由,得令c=1,則=(0,﹣3,1),取平面ABP的法向量=(0,1,0),則二面角F﹣AB﹣P的平面角α滿足:cosα===,故二面角F﹣AB﹣P的余弦值為:22.已知函數(shù)f(x)=(1)求函數(shù)y=f(x)在點(diǎn)(1,0)處的切線方程;(2)設(shè)實(shí)數(shù)k使得f(x)<kx恒成立,求k的取值范圍;(3)設(shè)g(x)=f(x)﹣kx(k∈R),求函數(shù)g(x)在區(qū)間[,e2]上的有兩個(gè)零點(diǎn),求k的取值范圍.參考答案:【考點(diǎn)】利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.【分析】(1)求導(dǎo)數(shù),可得切線的斜率,即可求函數(shù)y=f(x)在點(diǎn)(1,0)處的切線方程;(2)設(shè)實(shí)數(shù)k使得f(x)<kx恒成立,分離參數(shù),求最值,即可求k的取值范圍;(3)由(2)知,h(x))=在[,]上是增函數(shù),在[,e2]上是減函數(shù),利用函數(shù)g(x)在[,e2]上有2個(gè)零點(diǎn),可得k的取值范圍.【解答】解:(1)∵f(x)=,∴f′(x)=…2分∴f′(1)=1,…∴曲線y=f(x)在點(diǎn)(1,0)處的切線方程為y=x﹣1;…(2)設(shè)h(x)==(x>0),則h′(x)=(x>0)令h′
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度建筑行業(yè)農(nóng)民工勞動(dòng)合同規(guī)范范本
- 2025年婚慶婚禮現(xiàn)場婚禮用品租賃與配送合同模板
- 遼寧2025年遼寧科技學(xué)院招聘高層次和急需緊缺人才83人筆試歷年參考題庫附帶答案詳解
- 貴州2025年中共貴州省委政策研究室(省委改革辦)所屬事業(yè)單位招聘2人筆試歷年參考題庫附帶答案詳解
- 湖北2025年湖北省水利水電科學(xué)研究院院屬企業(yè)招聘11人筆試歷年參考題庫附帶答案詳解
- 2025年中國墻體錨固釘市場調(diào)查研究報(bào)告
- 2025年中國光彈應(yīng)力凍結(jié)箱市場調(diào)查研究報(bào)告
- 2025至2031年中國非標(biāo)自動(dòng)化機(jī)械行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國遠(yuǎn)距離求生電珠行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年等離子電視機(jī)項(xiàng)目可行性研究報(bào)告
- (正式版)HGT 6313-2024 化工園區(qū)智慧化評(píng)價(jià)導(dǎo)則
- 單縣煙草專賣局QC課題多維度降低行政處罰文書出錯(cuò)率
- 毫針刺法(全)教學(xué)課件
- 金風(fēng)科技-風(fēng)電產(chǎn)業(yè)集團(tuán)-供應(yīng)商現(xiàn)場作業(yè)基礎(chǔ)安全考試附答案
- 公共關(guān)系學(xué)完整教學(xué)課件
- 人工智能機(jī)器人科學(xué)小報(bào)手抄報(bào)簡報(bào)
- 三年級(jí)下冊(cè)美術(shù)課件-第1課 燈彩輝映|浙美版 (共19張PPT)
- 硫酸銨廢水MVR蒸發(fā)結(jié)晶
- 原子物理學(xué)第五章-多電子原子:泡利原理
- 35kV輸電線路工程旋挖鉆孔專項(xiàng)施工方案
- 固定資產(chǎn)借用登記表
評(píng)論
0/150
提交評(píng)論