函數(shù)的單調(diào)性 省賽獲獎_第1頁
函數(shù)的單調(diào)性 省賽獲獎_第2頁
函數(shù)的單調(diào)性 省賽獲獎_第3頁
函數(shù)的單調(diào)性 省賽獲獎_第4頁
函數(shù)的單調(diào)性 省賽獲獎_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1.3.1函數(shù)的單調(diào)性

必修1欣賞圖片年齡(歲)身高(米)4913202371.21.51.72.02.12.26艾賓浩斯的研究數(shù)據(jù)

時間(天)100記憶量012806040203456時間間隔剛剛記憶完畢20分鐘之后1小時之后8-9小時之后1天后2天后6天后一個月后

記憶保持率100%58.2%44.2%35.8%33.7%27.8%25.4%21.1%

…觀察圖象增函數(shù)

減函數(shù)隨的增大而增大在某個區(qū)間上隨的增大而減少在某個區(qū)間上單調(diào)增區(qū)間單調(diào)減區(qū)間

例1xoy12345-1-2-3-4-5-1-212

如圖是定義在閉區(qū)間[-5,5]上的函數(shù)y=f(x)的圖象,根據(jù)圖象說出y=f(x)的單調(diào)區(qū)間,以及在每一個單調(diào)區(qū)間上,y=f(x)是增函數(shù)還是減函數(shù)。[-2,1],(3,5]

單調(diào)區(qū)間:[-5,-2),[1,3),減函數(shù)增函數(shù)判單調(diào)性

問題考察函數(shù)的單調(diào)性。在形少數(shù)時難入微

華羅庚

增(減)函數(shù)函數(shù)在區(qū)間D上是增函數(shù)(increasingfunction).OxyOxy對于任意都有函數(shù)在區(qū)間D上是減函數(shù)(decreasingfunction).對于任意都有

概念辨析判斷下列說法是否正確:③已知函數(shù)因為所以函數(shù)是增函數(shù)。②若函數(shù)

滿足那么函數(shù)上是增函數(shù)。區(qū)間在①若函數(shù)

則有上是增函數(shù),區(qū)間在正確不正確不正確例3求證:函數(shù)在為增函數(shù).設(shè)元作差判號定論變形

證單調(diào)性求證:函數(shù)練習:例3、證明函數(shù)在上為增函數(shù)。

證明:設(shè)x1,x2是上任意兩個實數(shù),且

x1<x2,則

由于x1,x2且,所以且所以f(x1)-f(x2)<0,即f(x1)<f(x2),即在是增函數(shù)遇到根號“有理化”取值作差變形判號結(jié)論任意徹底理由充分完整能力提高:思考題考察函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論