2024學年上海市靜安區(qū)市級名校高二數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2024學年上海市靜安區(qū)市級名校高二數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2024學年上海市靜安區(qū)市級名校高二數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2024學年上海市靜安區(qū)市級名校高二數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2024學年上海市靜安區(qū)市級名校高二數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024學年上海市靜安區(qū)市級名校高二數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知f(x)是定義在R上的函數(shù),且f(2)=2,,則f(x)>x的解集是()A. B.C. D.2.已知命題,則為()A. B.C. D.3.已知橢圓的左、右頂點分別為,上、下頂點分別為.點為上不在坐標軸上的任意一點,且四條直線的斜率之積大于,則的離心率的取值范圍是()A. B.C. D.4.已知直線與圓交于A,B兩點,O為原點,且,則實數(shù)m等于()A. B.C. D.5.已知的周長為,頂點、的坐標分別為、,則點的軌跡方程為()A. B.C. D.6.已知雙曲線C:-=1(a>b>0)的左焦點為F1,若過原點傾斜角為的直線與雙曲線C左右兩支交于M、N兩點,且MF1NF1,則雙曲線C的離心率是()A.2 B.C. D.7.若動點在方程所表示的曲線上,則以下結論正確的是()①曲線關于原點成中心對稱圖形;②動點到坐標原點的距離的取值范圍為;③動點與點的最小距離為;④動點與點的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④8.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.169.已知數(shù)列滿足:且,則此數(shù)列的前20項的和為()A.621 B.622C.1133 D.113410.在中,,,,則此三角形()A.無解 B.一解C.兩解 D.解的個數(shù)不確定11.若直線與直線垂直,則()A.6 B.4C. D.12.已知角為第二象限角,,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若某幾何體的三視圖如圖所示,則該幾何體的體積是__________14.已知,若在區(qū)間上有且只有一個極值點,則a的取值范圍是______15.已知數(shù)列的前的前n項和為,數(shù)列的的前n項和為,則滿足的最小n的值為______16.某汽車運輸公司購買了一批豪華大客車投入運營.據(jù)市場分析,每輛客車營運的總利潤y(單位:10萬元)與營運年數(shù)x()為二次函數(shù)的關系(如圖),則每輛客車營運年數(shù)為________時,營運的年平均利潤最大三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知矩形ABCD所在平面外一點P,平面ABCD,E、F分別是AB、PC的中點求證:(1)共面;(2)求證:18.(12分)已知數(shù)列是等差數(shù)列,且,.(1)若數(shù)列中依次取出第2項,第4項,第6項,…,第項,按原來順序組成一個新數(shù)列,試求出數(shù)列的通項公式;(2)令,求數(shù)列的前項和.19.(12分)如圖,五邊形為東京奧運會公路自行車比賽賽道平面設計圖,根據(jù)比賽需要,在賽道設計時需預留出,兩條服務通道(不考慮寬度),,,,,為賽道.現(xiàn)已知,,千米,千米(1)求服務通道的長(2)在上述條件下,如何設計才能使折線賽道(即)的長度最大,并求最大值20.(12分)如圖,已知正方體的棱長為,,分別是棱與的中點.(1)求以,,,為頂點的四面體的體積;(2)求異面直線和所成角的大小.21.(12分)已知命題p:直線與雙曲線的右支有兩個不同的交點,命題q:直線與直線平行.(1)若,判斷命題“”的真假;(2)若命題“”為真命題,求實數(shù)k的取值范圍.22.(10分)已知數(shù)列和中,,且,.(1)寫出,,,,猜想數(shù)列和的通項公式并證明;(2)若對于任意都有,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】構造,結合已知有在R上遞增且,原不等式等價于,利用單調(diào)性求解集.【題目詳解】令,由題設知:,即在R上遞增,又,所以f(x)>x等價于,即.故選:D2、C【解題分析】將全稱命題否定為特稱命題即可【題目詳解】由題意,根據(jù)全稱命題與特稱命題的關系,可得命題,則,故選:C.3、A【解題分析】設,求得,得到,求得,結合,即可求解.【題目詳解】由橢圓的方程,可得,設,則,由,因為四條直線的斜率之積大于,即,所以,則離心率,又因為橢圓離心率,所以橢圓的離心率的取值范圍是.故選:A.4、A【解題分析】根據(jù)給定條件求出,再求出圓O到直線l的距離即可計算作答.【題目詳解】圓的圓心O,半徑,因,則,而,則,即是正三角形,點O到直線l的距離,因此,,解得,所以實數(shù)m等于.故選:A5、D【解題分析】分析可知點的軌跡是除去長軸端點的橢圓,求出、的值,結合橢圓焦點的位置可得出頂點的軌跡方程.【題目詳解】由已知可得,,且、、三點不共線,故點的軌跡是以、為焦點,且除去長軸端點的橢圓,由已知可得,得,,則,因此,點的軌跡方程為.故選:D.6、C【解題分析】根據(jù)雙曲線和直線的對稱性,結合矩形的性質(zhì)、雙曲線的定義、離心率公式、余弦定理進行求解即可.【題目詳解】設雙曲線的右焦點為F2,過原點傾斜角為的直線為,設M、N分別在第三、第一象限,由雙曲線和直線的對稱性可知:M、N兩點關于原點對稱,而MF1NF1,因此四邊形是矩形,而,所以是等邊三角形,故,因此,因為,所以,在等腰三角形中,由余弦定理可知:,由矩形的性質(zhì)可知:,由雙曲線的定義可知:,故選:C【題目點撥】關鍵點睛:利用矩形的性質(zhì)、雙曲線的定義是解題的關鍵.7、A【解題分析】將原方程等價變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點間的距離公式,結合二次函數(shù)知識可判斷②和③;取特殊點可判斷④.【題目詳解】因為等價于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關于原點成中心對稱圖形,故①正確;對于②,設,則動點到坐標原點的距離,因為,所以,故②正確;對于③,設,動點與點的距離為,因為函數(shù)在上遞減,所以當時,函數(shù)取得最小值,從而取得最小值,故③不正確;對于④,當時,因為,所以,故④不正確.綜上所述:結論正確的是:①②.故選:A8、B【解題分析】由已知直線過圓心得,再用均值不等式即可.【題目詳解】由已知直線過圓心得:,,當且僅當時取等.故選:B.9、C【解題分析】這個數(shù)列的奇數(shù)項是公差為2的等差數(shù)列,偶數(shù)項是公比為2的等比數(shù)列,只要分開來計算即可.【題目詳解】由于,所以當n為奇數(shù)時,是等差數(shù)列,即:共10項,和為;,共10項,其和為;∴該數(shù)列前20項的和;故選:C.10、C【解題分析】利用正弦定理求出的值,再根據(jù)所求值及a與b的大小關系即可判斷作答.【題目詳解】在中,,,,由正弦定理得,而為銳角,且,則或,所以有兩解故選:C11、A【解題分析】由兩條直線垂直的條件可得答案.【題目詳解】由題意可知,即故選:A.12、C【解題分析】由同角三角函數(shù)關系可得,進而直接利用兩角和的余弦展開求解即可.【題目詳解】∵,是第二象限角,∴,∴.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】根據(jù)三視圖可得如圖所示的幾何體,從而可求其體積.【題目詳解】據(jù)三視圖分析知,該幾何體為直三棱柱,且底面為直角邊為1的等腰直角三角形,高為2,所以其體積故答案為:114、【解題分析】求導得,進而根據(jù)題意在上有且只有一個變號零點,再根據(jù)零點的存在性定理求解.【題目詳解】解:,∵在區(qū)間上有且只有一個極值點,∴在上有且只有一個變號零點,∴,解得∴a的取值范圍是.故答案為:15、9【解題分析】由數(shù)列的前項和為,則當時,,所以,所以數(shù)列的前和為,當時,,當時,,所以滿足的最小的值為.點睛:本題主要考查了等差數(shù)列與等比數(shù)列的綜合應用問題,其中解答中涉及到數(shù)列的通項與的關系,推導數(shù)列的通項公式,以及等差、等比數(shù)列的前項和公式的應用,熟記等差、等比數(shù)列的通項公式和前項和公式是解答的關鍵,著重考查了學生的推理與運算能力.16、5【解題分析】首先根據(jù)題意得到二次函數(shù)的解析式為,再利用基本不等式求解的最大值即可.【題目詳解】根據(jù)題意得到:拋物線的頂點為,過點,開口向下,設二次函數(shù)的解析式為,所以,解得,即,則營運的年平均利潤,當且僅當,即時取等號故答案為:5.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)詳見解析.【解題分析】(1)以為原點,為軸,為軸,為軸,建立空間直角坐標系,設,,,求出,,,,0,,,,,從而,由此能證明共面(2)求出,0,,,,,由,能證明【題目詳解】證明:如圖,以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,設,,,則0,,0,,2b,,2b,,0,,為AB的中點,F(xiàn)為PC的中點,0,,b,,b,,,2b,,共面.(2),【題目點撥】本題考查三個向量共面的證明,考查兩直線垂直的證明,是基礎題18、(1),;(2).【解題分析】(1)利用等差數(shù)列性質(zhì)求出數(shù)列公差及通項公式,由求解作答.(2)由(1)的結論求出,再用錯位相減法計算作答.【小問1詳解】等差數(shù)列中,,解得,公差,則,因此,,依題意,,所以數(shù)列的通項公式,.【小問2詳解】由(1)知,,則,因此,,,所以.19、(1)服務通道的長為千米(2)時,折線賽道的長度最大,最大值為千米【解題分析】(1)先在中利用正弦定理得到長度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根據(jù)基本等式求解最值即可.【小問1詳解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(負值舍去)所以服務通道的長為千米【小問2詳解】在中,由余弦定理得:,即,所以因為,所以,所以,即(當且僅當時取等號)即當時,折線賽道的長度最大,最大值為千米20、(1)(2)【解題分析】(1)由題意可知該四面體為以為底面,以為高的四面體,可得四面體體積;(2)連接,,可得即為異面直線和所成的角的平面角,根據(jù)余弦定理可得角的大小.【小問1詳解】解:連接,,,以,,,為頂點的四面體即為三棱錐,底面的面積,高,則其體積;【小問2詳解】解:連接,,,則即為異面直線和所成的角的平面角,在中,,,,則,故,即和所成的角的的大小為.21、(1)命題“”為真命題(2)【解題分析】(1)先判斷命題p,命題q的真假,再利用復合命題的真假判斷;(2)根據(jù)命題“”真命題,由p為真命題,q為假命題求解.【小問1詳解】解:對于命題p,易知直線與雙曲線的左、右支各有一個交點,∴命題p為假命題;對于命題q,時,有與,顯然兩條直線垂直,∴命題q為假命題.∴命題“”為真命題.【小問2詳解】∵命題“”為真命題,∴p為真命題,q為假命題.對于命題p,由得,直線與雙曲線的右支有兩個不同的交點,即此方程有兩個不同的正根,∴得.對于命題q,要使命題q為真,則,解得,∴命題q為假命題,即.∴實數(shù)k的取值范圍為.22、(1),,,證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論