版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省西安音樂(lè)學(xué)院附屬中等音樂(lè)學(xué)校2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.與圓和圓都外切的圓的圓心在()A.一個(gè)圓上 B.一個(gè)橢圓上C.雙曲線的一支上 D.一條拋物線上2.已知雙曲線離心率為2,過(guò)點(diǎn)的直線與雙曲線C交于A,B兩點(diǎn),且點(diǎn)P恰好是弦的中點(diǎn),則直線的方程為()A. B.C. D.3.設(shè)雙曲線的實(shí)軸長(zhǎng)為8,一條漸近線為,則雙曲線的方程為()A. B.C. D.4.已知命題p:,,則命題p的否定為()A., B.,C., D.,5.設(shè)是區(qū)間上的連續(xù)函數(shù),且在內(nèi)可導(dǎo),則下列結(jié)論中正確的是()A.的極值點(diǎn)一定是最值點(diǎn)B.的最值點(diǎn)一定是極值點(diǎn)C.在區(qū)間上可能沒(méi)有極值點(diǎn)D.在區(qū)間上可能沒(méi)有最值點(diǎn)6.已知等差數(shù)列滿足,則等于()A. B.C. D.7.如圖,在棱長(zhǎng)為的正方體中,為線段的中點(diǎn),為線段的中點(diǎn),則直線到直線的距離為()A. B.C. D.8.已知、是橢圓和雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.59.在下列各圖中,每個(gè)圖的兩個(gè)變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)10.為了調(diào)查全國(guó)人口的壽命,抽查了11個(gè)?。ㄊ校┑?500名城鎮(zhèn)居民,這2500名城鎮(zhèn)居民的壽命的全體是()A.總體 B.個(gè)體C.樣本 D.樣本容量11.函數(shù)y=的最大值為Ae-1 B.eC.e2 D.12.已知橢圓的右焦點(diǎn)為,為坐標(biāo)原點(diǎn),為軸上一點(diǎn),點(diǎn)是直線與橢圓的一個(gè)交點(diǎn),且,則橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線l1:(1)x+y﹣2=0與l2:(1)x+ay﹣4=0平行,則a=_____.14.射擊隊(duì)某選手命中環(huán)數(shù)的概率如下表所示:命中環(huán)數(shù)10987概率0.320.280.180.120.1該選手射擊兩次,兩次命中環(huán)數(shù)相互獨(dú)立,則他至少命中一次9環(huán)或10環(huán)的概率為_(kāi)________________.(結(jié)果用小數(shù)表示)15.函數(shù)的圖象在點(diǎn)處的切線方程為_(kāi)___.16.設(shè),分別是橢圓C:左、右焦點(diǎn),點(diǎn)M為橢圓C上一點(diǎn)且在第一象限,若為等腰三角形,則M的坐標(biāo)為_(kāi)__________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)等差數(shù)列的各項(xiàng)均為整數(shù),且滿足對(duì)任意正整數(shù),總存在正整數(shù),使得,則稱這樣的數(shù)列具有性質(zhì)(1)若數(shù)列的通項(xiàng)公式為,數(shù)列是否具有性質(zhì)?并說(shuō)明理由;(2)若,求出具有性質(zhì)的數(shù)列公差的所有可能值;(3)對(duì)于給定的,具有性質(zhì)的數(shù)列是有限個(gè),還是可以無(wú)窮多個(gè)?(直接寫(xiě)出結(jié)論)18.(12分)已知橢圓.離心率為,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形(1)求橢圓的方程;(2)若直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn)直線的斜率之積等于,試探求的面積是否為定值,并說(shuō)明理由19.(12分)設(shè)等差數(shù)列的前n項(xiàng)和為,已知(1)求數(shù)列通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為.定義為不超過(guò)x的最大整數(shù),例如.當(dāng)時(shí),求n的值20.(12分)已知數(shù)列滿足,記數(shù)列的前項(xiàng)和為,且,(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前100項(xiàng)和21.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值22.(10分)已知命題p:函數(shù)有零點(diǎn);命題,(1)若命題p,q均為真命題,求實(shí)數(shù)a的取值范圍;(2)若為真命題,為假命題,求實(shí)數(shù)a的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】設(shè)動(dòng)圓的半徑為,然后根據(jù)動(dòng)圓與兩圓都外切得,再兩式相減消去參數(shù),則滿足雙曲線的定義,即可求解.【題目詳解】設(shè)動(dòng)圓的圓心為,半徑為,而圓的圓心為,半徑為1;圓的圓心為,半徑為2依題意得,則,所以點(diǎn)的軌跡是雙曲線的一支故選:C2、C【解題分析】運(yùn)用點(diǎn)差法即可求解【題目詳解】由已知得,又,,可得.則雙曲線C的方程為.設(shè),,則兩式相減得,即.又因?yàn)辄c(diǎn)P恰好是弦的中點(diǎn),所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗(yàn)滿足題意故選:C3、D【解題分析】雙曲線的實(shí)軸長(zhǎng)為,漸近線方程為,代入解析式即可得到結(jié)果.【題目詳解】雙曲線的實(shí)軸長(zhǎng)為8,即,,漸近線方程為,進(jìn)而得到雙曲線方程為.故選:D.4、D【解題分析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫(xiě),即可求解.【題目詳解】根據(jù)全稱命題與存在性命題的關(guān)系可得:命題“p:,”的否定式為“,”.故選:D.5、C【解題分析】根據(jù)連續(xù)函數(shù)的極值和最值的關(guān)系即可判斷【題目詳解】根據(jù)函數(shù)的極值與最值的概念知,的極值點(diǎn)不一定是最值點(diǎn),的最值點(diǎn)不一定是極值點(diǎn).可能是區(qū)間的端點(diǎn),連續(xù)可導(dǎo)函數(shù)在閉區(qū)間上一定有最值,所以選項(xiàng)A,B,D都不正確,若函數(shù)在區(qū)間上單調(diào),則函數(shù)在區(qū)間上沒(méi)有極值點(diǎn),所以C正確故選:C.【題目點(diǎn)撥】本題主要考查函數(shù)的極值與最值的概念辨析,屬于容易題6、A【解題分析】利用等差中項(xiàng)求出的值,進(jìn)而可求得的值.【題目詳解】因?yàn)榈?,因此?故選:A.7、C【解題分析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉(zhuǎn)化成點(diǎn)到直線的距離,結(jié)合余弦定理即同角三角函數(shù)基本關(guān)系,求得,因此可得,進(jìn)而可得直線到直線的距離;【題目詳解】解:如圖,連接,,,,在平面中,作,為垂足,因?yàn)?,分別為,的中點(diǎn),因?yàn)?,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因?yàn)椋允卿J角,所以,在直角三角形中,,故直線到直線的距離為;故選:C8、C【解題分析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關(guān)于橢圓的離心率和雙曲線的離心率的關(guān)系式,即可求得的值.【題目詳解】設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,雙曲線的實(shí)軸長(zhǎng)為,令,不妨設(shè)則,解之得代入,可得整理得,即,也就是故選:C9、D【解題分析】根據(jù)圖形可得(1)具有函數(shù)關(guān)系;(2)(3)的散點(diǎn)分布在一條直線或曲線附近,具有相關(guān)關(guān)系;(4)的散點(diǎn)雜亂無(wú)章,不具有相關(guān)關(guān)系.【題目詳解】對(duì)(1),所有的點(diǎn)都在曲線上,故具有函數(shù)關(guān)系;對(duì)(2),所有的散點(diǎn)分布在一條直線附近,具有相關(guān)關(guān)系;對(duì)(3),所有的散點(diǎn)分布在一條曲線附近,具有相關(guān)關(guān)系;對(duì)(4),所有的散點(diǎn)雜亂無(wú)章,不具有相關(guān)關(guān)系.故選:D.10、C【解題分析】由樣本的概念即知.【題目詳解】由題意可知,這2500名城鎮(zhèn)居民的壽命的全體是樣本.11、A【解題分析】,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的最大值為時(shí),y==故選A點(diǎn)睛:研究函數(shù)最值主要根據(jù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,找到最值,分式求導(dǎo)公式要記熟12、D【解題分析】設(shè)橢圓的左焦點(diǎn)為,由橢圓的對(duì)稱性可知,則,所以,即可得到的關(guān)系,利用橢圓的定義進(jìn)而求得離心率.【題目詳解】設(shè)橢圓的左焦點(diǎn)為,連接,因?yàn)?,所以,如圖所示,所以,設(shè),,則,所以,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、2【解題分析】根據(jù)兩直線平行的充要條件求解【題目詳解】因?yàn)橐阎獌芍本€平行,所以,解得故答案為:【題目點(diǎn)撥】本題考查兩直線平行的充要條件,兩直線平行的充要條件是,或,在均不為0時(shí),用表示容易理解與記憶14、84【解題分析】先求出該選手射擊兩次,兩次命中的環(huán)數(shù)都低于9環(huán)的概率,由對(duì)立事件的概率可得答案.【題目詳解】該選手射擊一次,命中的環(huán)數(shù)低于9環(huán)的概率為該選手射擊兩次,兩次命中的環(huán)數(shù)都低于9環(huán)的概率為所以他至少命中一次9環(huán)或10環(huán)的概率為故答案:0.8415、【解題分析】先求出導(dǎo)函數(shù),進(jìn)而根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,然后求出切線方程.【題目詳解】由題意,,,則切線方程為:.故答案為:.16、【解題分析】先計(jì)算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標(biāo)為,代入橢圓C:求出.【題目詳解】橢圓C:,所以.因?yàn)镸在橢圓上,.因?yàn)镸在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過(guò)M作MA⊥x軸于A,則所以,即M的橫坐標(biāo)為.因?yàn)镸為橢圓C:上一點(diǎn)且在第一象限,所以,解得:所以M的坐標(biāo)為.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)數(shù)列具有性質(zhì),理由見(jiàn)解析;(2),;(3)有限個(gè).【解題分析】(1)由題意,由性質(zhì)定義,即可知是否具有性質(zhì).(2)由題設(shè),存在,結(jié)合已知得且,則,由性質(zhì)的定義只需保證為整數(shù)即可確定公差的所有可能值;(3)根據(jù)(2)的思路,可得且,由為整數(shù),在為定值只需為整數(shù),即可判斷數(shù)列的個(gè)數(shù)是否有限.【小問(wèn)1詳解】由,對(duì)任意正整數(shù),,說(shuō)明仍為數(shù)列中的項(xiàng),∴數(shù)列具有性質(zhì).【小問(wèn)2詳解】設(shè)的公差為.由條件知:,則,即,∴必有且,則,而此時(shí)對(duì)任意正整數(shù),,又必一奇一偶,即為非負(fù)整數(shù)因此,只要為整數(shù)且,那么為中的一項(xiàng).易知:可取,對(duì)應(yīng)得到個(gè)滿足條件的等差數(shù)列.【小問(wèn)3詳解】同(2)知:,則,∴必有且,則,故任意給定,公差均為有限個(gè),∴具有性質(zhì)的數(shù)列是有限個(gè).【題目點(diǎn)撥】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)性質(zhì)的定義,在第2、3問(wèn)中判斷滿足等差數(shù)列通項(xiàng)公式,結(jié)合各項(xiàng)均為整數(shù),判斷公差的個(gè)數(shù)是否有限即可.18、(1);(2)是定值,理由見(jiàn)解析.【解題分析】(1)由題意有,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形有,即可寫(xiě)出橢圓方程;(2)直線與橢圓交于兩點(diǎn),聯(lián)立方程結(jié)合韋達(dá)定理即有,已知應(yīng)用點(diǎn)線距離公式、三角形面積公式即可說(shuō)明的面積是否為定值;【題目詳解】(1)橢圓離心率為,即,∵點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形,∴,綜上有:,,故橢圓方程為,(2)由直線與橢圓交于兩點(diǎn),聯(lián)立方程:,整理得,設(shè),則,,,,原點(diǎn)到的距離,為定值;【題目點(diǎn)撥】本題考查了由離心率求橢圓方程,根據(jù)直線與橢圓的相交關(guān)系證明交點(diǎn)與原點(diǎn)構(gòu)成的三角形面積是否為定值的問(wèn)題.19、(1)(2)10【解題分析】(1)由等差數(shù)列的前項(xiàng)和公式求得公差,可得通項(xiàng)公式;(2)用裂項(xiàng)相消法求和求得,根據(jù)新定義求得,然后分組,結(jié)合等差數(shù)列的前項(xiàng)和公式計(jì)算后解方程可得【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為d,因?yàn)?,則.因?yàn)椋瑒t,得.所以數(shù)列的通項(xiàng)公式是【小問(wèn)2詳解】因?yàn)椋瑒t所以.當(dāng)時(shí),因?yàn)椋瑒t.當(dāng)時(shí),因?yàn)椋瑒t.因?yàn)?,則,即,即,即.因?yàn)椋?0、(1)(2)【解題分析】(1)由題意得出,然后與原式結(jié)合,兩式相減并化簡(jiǎn)求出,最后根據(jù)等差數(shù)列的定義求得答案;(2)結(jié)合(1),分別討論,和三種情況,分別求出,進(jìn)而求出.【小問(wèn)1詳解】因?yàn)?,所以,兩式相減得,所以又,所以數(shù)列是首項(xiàng)為,公差為2的等差數(shù)列,所以.【小問(wèn)2詳解】由得,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,所以.21、(1)證明見(jiàn)解析(2)【解題分析】(1)根據(jù)線面垂直的性質(zhì)可得,,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問(wèn)1詳解】證明:因?yàn)槠矫?,平面,平面,所以,且,因?yàn)?,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,則,,,,,,,所以,,,所以;【小問(wèn)2詳解】,設(shè)平面的法向量為,則,即,令,有,設(shè)平面的法向量為,則,即,令,有,設(shè)平面和平面的夾角為,,所以平面和平面的夾角的余弦值為22、(1);(2).【解題分析】(1)根據(jù)二次
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆重慶市銅梁中學(xué)高三下學(xué)期聯(lián)考語(yǔ)文試題含解析
- 《防火防爆安全培訓(xùn)》課件
- 2025屆湖北省孝感市八校高考語(yǔ)文一模試卷含解析
- 河南省平頂山市2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析
- 現(xiàn)代學(xué)徒制課題:基于中國(guó)特色學(xué)徒制的中高本一體化課程體系研究(附:研究思路模板、可修改技術(shù)路線圖)
- 2025屆湖北省仙桃市漢江高級(jí)中學(xué)高考語(yǔ)文倒計(jì)時(shí)模擬卷含解析
- 浙江省溫州市永嘉縣翔宇中學(xué)2025屆高三第二次調(diào)研語(yǔ)文試卷含解析
- 浙江省溫州市普通高中2025屆高考數(shù)學(xué)全真模擬密押卷含解析
- 2025屆江蘇省淮安市田家炳中學(xué)高三第二次聯(lián)考英語(yǔ)試卷含解析
- 內(nèi)蒙古包頭六中2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析
- 便利店?duì)I運(yùn)管理手冊(cè)(全集)
- 軍事理論-國(guó)家安全環(huán)境強(qiáng)化版智慧樹(shù)知到期末考試答案章節(jié)答案2024年國(guó)防大學(xué)
- 水輪機(jī)檢修工考試考試題庫(kù)
- 2024年北京房屋租賃合同電子版(3篇)
- 2024中國(guó)電信安徽公司縣分公司定向招聘60人(應(yīng)屆和非應(yīng)屆)重點(diǎn)基礎(chǔ)提升難、易點(diǎn)模擬試題(共500題)附帶答案詳解
- 2024年深圳市中考數(shù)學(xué)模擬題匯編:反比例函數(shù)(附答案解析)
- ??谑袊?guó)土空間總體規(guī)劃(2020-2035)(公眾版)
- 云南省昆明市盤龍區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末物理試卷
- 老舊小區(qū)改造項(xiàng)目重難點(diǎn)分析及對(duì)策措施
- (正式版)JTT 1495-2024 公路水運(yùn)危險(xiǎn)性較大工程安全專項(xiàng)施工方案審查規(guī)程
- 教科版小學(xué)二年級(jí)上冊(cè)科學(xué)期末測(cè)試卷及參考答案(滿分必刷)
評(píng)論
0/150
提交評(píng)論