2024屆廣東深圳羅湖外國語學(xué)校高二上數(shù)學(xué)期末考試試題含解析_第1頁
2024屆廣東深圳羅湖外國語學(xué)校高二上數(shù)學(xué)期末考試試題含解析_第2頁
2024屆廣東深圳羅湖外國語學(xué)校高二上數(shù)學(xué)期末考試試題含解析_第3頁
2024屆廣東深圳羅湖外國語學(xué)校高二上數(shù)學(xué)期末考試試題含解析_第4頁
2024屆廣東深圳羅湖外國語學(xué)校高二上數(shù)學(xué)期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆廣東深圳羅湖外國語學(xué)校高二上數(shù)學(xué)期末考試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為A. B.C. D.2.已知兩定點(diǎn)和,動(dòng)點(diǎn)在直線上移動(dòng),橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的短軸的最小值為()A. B.C. D.3.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.14.若存在兩個(gè)不相等的正實(shí)數(shù)x,y,使得成立,則實(shí)數(shù)m的取值范圍是()A. B.C. D.5.已知過點(diǎn)的直線與圓相切,且與直線垂直,則()A. B.C. D.6.已知平面的一個(gè)法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關(guān)系為()A.l⊥ B.C.l與相交但不垂直 D.l∥7.如圖,在直三棱柱中,且,點(diǎn)E為中點(diǎn).若平面過點(diǎn)E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)8.設(shè)雙曲線的實(shí)軸長為8,一條漸近線為,則雙曲線的方程為()A. B.C. D.9.方程表示橢圓的充分不必要條件可以是()A. B.C. D.10.用反證法證明“若a,b∈R,,則a,b不全為0”時(shí),假設(shè)正確的是()A.a,b中只有一個(gè)為0 B.a,b至少一個(gè)不為0C.a,b至少有一個(gè)為0 D.a,b全為011.《九章算術(shù)》中,將四個(gè)面都為直角三角形的三棱錐稱為鱉臑(nào).如圖所示的三棱錐為一鱉臑,且平面,平面,若,,,則()A. B.C. D.12.某機(jī)構(gòu)通過抽樣調(diào)查,利用列聯(lián)表和統(tǒng)計(jì)量研究患肺病是否與吸煙有關(guān),計(jì)算得,經(jīng)查對(duì)臨界值表知,,現(xiàn)給出四個(gè)結(jié)論,其中正確的是()A.因?yàn)?,故?0%的把握認(rèn)為“患肺病與吸煙有關(guān)"B.因?yàn)?,故?5%把握認(rèn)為“患肺病與吸煙有關(guān)”C.因?yàn)?,故?0%的把握認(rèn)為“患肺病與吸煙無關(guān)”D.因?yàn)椋视?5%的把握認(rèn)為“患肺病與吸煙無關(guān)”二、填空題:本題共4小題,每小題5分,共20分。13.直線與直線間的距離為___________.14.若拋物線上一點(diǎn)到其準(zhǔn)線的距離為4,則拋物線的標(biāo)準(zhǔn)方程為___________.15.已知向量與是平面的兩個(gè)法向量,則__________16.若雙曲線的一條漸近線的傾斜角為,則雙曲線的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過F且與x軸垂直的直線交該拋物線于A,B兩點(diǎn),|AB|=4(1)求拋物線的方程;(2)過點(diǎn)F的直線l交拋物線于P,Q兩點(diǎn),若△OPQ的面積為4,求直線l的斜率(其中O為坐標(biāo)原點(diǎn))18.(12分)某村莊擬修建一個(gè)無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率)(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大19.(12分)如圖,四邊形為矩形,,,為的中點(diǎn),與交于點(diǎn),平面.(1)若,求與所成角的余弦值;(2)若,求直線與平面所成角的正弦值.20.(12分)已知橢圓:,的左右焦點(diǎn),是雙曲線的左右頂點(diǎn),的離心率為,的離心率為,點(diǎn)在上,過點(diǎn)E和,分別作直線交橢圓于,和,點(diǎn),如圖.(1)求,的方程;(2)求證:直線和的斜率之積為定值;(3)求證:為定值.21.(12分)已知命題p:集合為空集,命題q:不等式恒成立(1)若p為真命題,求實(shí)數(shù)a的取值范圍;(2)若為真命題,為假命題,求實(shí)數(shù)a的取值范圍22.(10分)在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),已知直線:mx-(2-m)y-4=0與直線h:x+y-2=0的交點(diǎn)M在第一三象限的角平分線上.(1)求實(shí)數(shù)m的值;(2)若點(diǎn)P在直線l上且,求點(diǎn)P的坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】設(shè)AA1=2AB=2,因?yàn)?,所以異面直線A1B與AD1所成角,,故選D.2、B【解題分析】根據(jù)題意,點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的性質(zhì),以及橢圓的定義,即可求解.【題目詳解】根據(jù)題意,設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),則,解得,即.根據(jù)橢圓的定義可知,,當(dāng)、、三點(diǎn)共線時(shí),長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.3、B【解題分析】由可得拋物線標(biāo)椎方程為:,由焦點(diǎn)和準(zhǔn)線方程即可得解.【題目詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,所以拋物線的焦點(diǎn)為,準(zhǔn)線方程為,所以焦點(diǎn)到準(zhǔn)線的距離為,故選:B【題目點(diǎn)撥】本題考了拋物線標(biāo)準(zhǔn)方程,考查了焦點(diǎn)和準(zhǔn)線相關(guān)基本量,屬于基礎(chǔ)題.4、D【解題分析】將給定等式變形并構(gòu)造函數(shù),由函數(shù)的圖象與垂直于y軸的直線有兩個(gè)公共點(diǎn)推理作答.【題目詳解】因,令,則存在兩個(gè)不相等的正實(shí)數(shù)x,y,使得,即存在垂直于y軸的直線與函數(shù)的圖象有兩個(gè)公共點(diǎn),,,而,當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,則垂直于y軸的直線與函數(shù)的圖象最多只有1個(gè)公共點(diǎn),不符合要求,當(dāng)時(shí),由得,當(dāng)時(shí),,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,令,,令,則,即在上單調(diào)遞增,,即,在上單調(diào)遞增,則有當(dāng)時(shí),,,而函數(shù)在上單調(diào)遞增,取,則,而,因此,存在垂直于y軸的直線(),與函數(shù)的圖象有兩個(gè)公共點(diǎn),所以實(shí)數(shù)m的取值范圍是.故選:D【題目點(diǎn)撥】思路點(diǎn)睛:涉及雙變量的等式或不等式問題,把雙變量的等式或不等式轉(zhuǎn)化為一元變量問題求解,途徑都是構(gòu)造一元函數(shù).5、B【解題分析】首先由點(diǎn)的坐標(biāo)滿足圓的方程來確定點(diǎn)在圓上,然后求出過點(diǎn)的圓的切線方程,最后由兩直線的垂直關(guān)系轉(zhuǎn)化為斜率關(guān)系求解.【題目詳解】由題知,圓的圓心,半徑.因?yàn)?,所以點(diǎn)在圓上,所以過點(diǎn)的圓的切線與直線垂直,設(shè)切線的斜率,則有,即,解得.因?yàn)橹本€與切線垂直,所以,解得.故選:B.6、A【解題分析】由向量與平面法向量的關(guān)系判斷直線與平面的位置關(guān)系【題目詳解】因?yàn)椋?,所以故選:A7、B【解題分析】構(gòu)造出長方體,取中點(diǎn)連接然后利用臨界位置分情況討論即可.【題目詳解】如圖,構(gòu)造出長方體,取中點(diǎn),連接則所有過點(diǎn)與成角的平面,均與以為軸的圓錐相切,過點(diǎn)繞且與成角,當(dāng)與水平面垂直且在面的左側(cè)(在長方體的外面)時(shí),與面所成角為75°(與面成45°,與成30°),過點(diǎn)繞旋轉(zhuǎn),轉(zhuǎn)一周,90°顯然最大,到了另一個(gè)邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30

,綜上,這樣的平面α有2個(gè),故選:B.8、D【解題分析】雙曲線的實(shí)軸長為,漸近線方程為,代入解析式即可得到結(jié)果.【題目詳解】雙曲線的實(shí)軸長為8,即,,漸近線方程為,進(jìn)而得到雙曲線方程為.故選:D.9、D【解題分析】由“方程表示橢圓”可求得實(shí)數(shù)的取值范圍,結(jié)合充分不必要條件的定義可得出結(jié)論.【題目詳解】若方程表示橢圓,則,解得或.故方程表示橢圓的充分不必要條件可以是.故選:D.10、D【解題分析】把要證的結(jié)論否定之后,即得所求的反設(shè)【題目詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設(shè)正確的是a,b全為0.故選:D11、A【解題分析】根據(jù)平面,平面求解.【題目詳解】因?yàn)槠矫?,平面,所以,又,,,所?所以,故選:A12、A【解題分析】根據(jù)給定條件利用獨(dú)立性檢驗(yàn)的知識(shí)直接判斷作答.【題目詳解】因,且,由臨界值表知,,,所以有90%的把握認(rèn)為“患肺病與吸煙有關(guān)”,則A正確,C不正確;.因臨界值3.841>3.305,則不能確定有95%的把握認(rèn)為“患肺病與吸煙有關(guān)”,也不能確定有95%的把握認(rèn)為“患肺病與吸煙無關(guān)”,即B,D都不正確.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】利用平行間的距離公式可求得結(jié)果.【題目詳解】由平行線間的距離公式可知,直線、間的距離為.故答案為:.14、【解題分析】先由拋物線的方程求出準(zhǔn)線的方程,然后根據(jù)點(diǎn)到準(zhǔn)線的距離可求,進(jìn)而可得拋物線的標(biāo)準(zhǔn)方程.【題目詳解】拋物線的準(zhǔn)線方程為,點(diǎn)到其準(zhǔn)線的距離為,由題意可得,解得,故拋物線的標(biāo)準(zhǔn)方程為.故答案為:.15、【解題分析】由且為非零向量可直接構(gòu)造方程求得,進(jìn)而得到結(jié)果.【題目詳解】由題意知:,,解得:(舍)或,.故答案為:.16、2【解題分析】利用雙曲線的漸近線的傾斜角,求解,關(guān)系,然后求解離心率,即可求解.【題目詳解】雙曲線一條漸近線的傾斜角為,可得,所以,所以雙曲線的離心率為.故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】(1)根據(jù)拋物線的定義以及拋物線通徑的性質(zhì)可得,從而可得結(jié)果;(2)設(shè)直線的方程為,代入,得,利用弦長公式,結(jié)合韋達(dá)定理可得的值,由點(diǎn)到直線的距離公式,根據(jù)三角形面積公式可得,從而可得結(jié)果.【題目詳解】(1)由拋物線的定義得到準(zhǔn)線的距離都是p,所以|AB|=2p=4,所以拋物線的方程為y2=4x(2)設(shè)直線l的方程為y=k(x-1),P(x1,y1),Q(x2,y2)因?yàn)橹本€l與拋物線有兩個(gè)交點(diǎn),所以k≠0,得,代入y2=4x,得,且恒成立,則,y1y2=-4,所以又點(diǎn)O到直線l的距離,所以,解得,即【題目點(diǎn)撥】本題主要考查直線與拋物線的位置關(guān)系的相關(guān)問題,意在考查綜合利用所學(xué)知識(shí)解決問題能力和較強(qiáng)的運(yùn)算求解能力,其常規(guī)思路是先把直線方程與圓錐曲線方程聯(lián)立,消元、化簡,然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問題18、(1)V(r)=(300r﹣4r3)(0,5)(2)見解析【解題分析】(1)先由圓柱的側(cè)面積及底面積計(jì)算公式計(jì)算出側(cè)面積及底面積,進(jìn)而得出總造價(jià),依條件得等式,從中算出,進(jìn)而可計(jì)算,再由可得;(2)通過求導(dǎo),求出函數(shù)在內(nèi)的極值點(diǎn),由導(dǎo)數(shù)的正負(fù)確定函數(shù)的單調(diào)性,進(jìn)而得出取得最大值時(shí)的值.(1)∵蓄水池的側(cè)面積的建造成本為元,底面積成本為元∴蓄水池的總建造成本為元所以即∴∴又由可得故函數(shù)的定義域?yàn)椋?)由(1)中,可得()令,則∴當(dāng)時(shí),,函數(shù)為增函數(shù)當(dāng),函數(shù)為減函數(shù)所以當(dāng)時(shí)該蓄水池的體積最大考點(diǎn):1.函數(shù)的應(yīng)用問題;2.函數(shù)的單調(diào)性與導(dǎo)數(shù);2.函數(shù)的最值與導(dǎo)數(shù).19、(1)(2)【解題分析】(1)以為原點(diǎn),、所在的直線為、軸,以過點(diǎn)垂直于面的直線為軸,建立空間直角坐標(biāo)系,利用空間向量法可求得與所成角的余弦值;(2)計(jì)算出平面的法向量,利用空間向量法可求得直線與平面所成角的正弦值.【小問1詳解】解:如圖,以為原點(diǎn),、所在的直線為、軸,以過點(diǎn)垂直于面的直線為軸,建立空間直角坐標(biāo)系,,,則,則,故,因?yàn)槠矫?,平面,則,若,則,故、、、,則,,.因此,若,則與所成角的余弦值為.【小問2詳解】解:若,則、,,,,設(shè)平面的法向量為,則,取,可得,,所以直線與平面所成角的正弦值為.20、(1):;:(2)證明見解析(3)證明見解析【解題分析】(1)利用待定系數(shù)法,根據(jù)條件先求曲線的方程,再求曲線的方程;(2)首先設(shè),表示直線和的斜率之積,即可求解定值;(3)首先表示直線與方程聯(lián)立消,利用韋達(dá)定理表示弦長,以及利用直線和的斜率關(guān)系,表示弦長,并證明為定值.【小問1詳解】由題設(shè)知,橢圓離心率為解得∴,∵橢圓的左右焦點(diǎn),是雙曲線的左右頂點(diǎn),∴設(shè)雙曲線:∴的離心率為解得.∴::;【小問2詳解】證明:∵點(diǎn)在上∴設(shè)則,∴.∴直線和的斜率之積為定值1;【小問3詳解】證明:設(shè)直線和的斜率分別為,,則設(shè),:與方程聯(lián)立消得“*”則,是“*”的二根則則同理∴.21、(1)(2)【解題分析】(1)根據(jù)判別式小于0可得;(2)根據(jù)復(fù)合命題的真假可知,p和q有且只有一個(gè)真命題,然后根據(jù)相應(yīng)范圍通過集合運(yùn)算可得.【小問1詳解】因?yàn)榧蠟榭占?,所以無實(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論