2024屆西藏省高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第1頁
2024屆西藏省高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第2頁
2024屆西藏省高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第3頁
2024屆西藏省高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第4頁
2024屆西藏省高二數(shù)學第一學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆西藏省高二數(shù)學第一學期期末質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),的導函數(shù),的圖象如圖所示,則的極值情況為()A.2個極大值,1個極小值 B.1個極大值,1個極小值C.1個極大值,2個極小值 D.1個極大值,無極小值2.《九章算術(shù)》是我國古代的數(shù)學名著,書中有如下問題:“今有五人分五錢,令上兩人與下三人等,問各得幾何?”其意思為:“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得之和與丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此為等差數(shù)列,問五人各得多少錢?”(“錢”是古代一種重量單位),這個問題中戊所得為()A.錢 B.錢C.錢 D.錢3.拋物線上的一點到其焦點的距離等于()A. B.C. D.4.記為等差數(shù)列的前項和.若,,則的公差為()A.1 B.2C.4 D.85.在中,,,為所在平面上任意一點,則的最小值為()A.1 B.C.-1 D.-26.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣方法,抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機編號,則抽取的42人中,編號落入?yún)^(qū)間[481,720]的人數(shù)為A.11 B.12C.13 D.147.已知等差數(shù)列的前項和為,,,當取最大時的值為()A. B.C. D.8.中國明代商人程大位對文學和數(shù)學頗感興趣,他于60歲時完成杰作《直指算法統(tǒng)宗》.這是一本風行東亞的數(shù)學名著,該書A.76石 B.77石C.78石 D.79石9.已知拋物線y2=2px(p>0)的焦點為F,準線為l,M是拋物線上一點,過點M作MN⊥l于N.若△MNF是邊長為2的正三角形,則p=()A. B.C.1 D.210.在中,角A,B,C所對的邊分別為a,b,c,若,,的面積為10,則的值為()A. B.C. D.11.“”是“方程是圓的方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知雙曲線C:的右焦點為,一條漸近線被圓截得的弦長為2b,則雙曲線C的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)x,y滿足方程,則的最大值為_________14.設(shè)直線的方向向量分別為,若,則實數(shù)m等于___________.15.函數(shù)的圖象在點P()處的切線方程是,則_____16.已知過橢圓上的動點作圓(為圓心):的兩條切線,切點分別為,若的最小值為,則橢圓的離心率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知空間中三點,,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實數(shù)的值18.(12分)已知數(shù)列{an}滿足*(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{an}的前n項和Sn19.(12分)三棱柱中,側(cè)面為菱形,,,,(1)求證:面面;(2)在線段上是否存在一點M,使得二面角為,若存在,求出的值,若不存在,請說明理由20.(12分)已知橢圓的離心率為,過左焦點且垂直于長軸的弦長為.(1)求橢圓的標準方程;(2)點為橢圓的長軸上的一個動點,過點且斜率為的直線交橢圓于兩點,證明為定值.21.(12分)在①直線l:是拋物線C的準線;②F是橢圓的一個焦點;③,對于C上的點A,的最小值為;在以上三個條件中任選一個,填到下面問題中的橫線處,并完成解答.已知拋物線C:的焦點為F,滿足_____(1)求拋物線C的標準方程;(2)是拋物線C上在第一象限內(nèi)的一點,直線:與C交于M,N兩點,若的面積為,求m的值22.(10分)如圖,在正方體中,分別為,的中點(1)求證:平面平面;(2)求平面與平面所成銳二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】根據(jù)圖象判斷的正負,再根據(jù)極值的定義分析判斷即可【題目詳解】由,得,令,由圖可知的三個根即為與的交點的橫坐標,當時,,當時,,即,所以為的極大值點,為的極大值,當時,,即,所以為的極小值點,為的極小值,故選:B2、D【解題分析】根據(jù)題意將實際問題轉(zhuǎn)化為等差數(shù)列的問題即可解決【題目詳解】解:由題意,可設(shè)甲、乙、丙、丁、戊五人分得的錢分別為,,,,則,,,,成等差數(shù)列,設(shè)公差為,整理上面兩個算式,得:,解得,故選:3、C【解題分析】由點的坐標求得參數(shù),再由焦半徑公式得結(jié)論【題目詳解】由題意,解得,所以,故選:C4、C【解題分析】根據(jù)等差數(shù)列的通項公式及前項和公式利用條件,列出關(guān)于與的方程組,通過解方程組求數(shù)列的公差.【題目詳解】設(shè)等差數(shù)列的公差為,則,,聯(lián)立,解得.故選:C.5、C【解題分析】以為建立平面直角坐標系,設(shè),把向量的數(shù)量積用坐標表示后可得最小值【題目詳解】如圖,以為建立平面直角坐標系,則,設(shè),,,,,∴,∴當時,取得最小值故選:C【題目點撥】本題考查向量的數(shù)量積,解題方法是建立平面直角坐標系,把向量的數(shù)量積轉(zhuǎn)化為坐標表示6、B【解題分析】使用系統(tǒng)抽樣方法,從840人中抽取42人,即從20人抽取1人∴從編號1~480的人中,恰好抽取480/20=24人,接著從編號481~720共240人中抽取240/20=12人考點:系統(tǒng)抽樣7、B【解題分析】由已知條件及等差數(shù)列通項公式、前n項和公式求基本量,再根據(jù)等差數(shù)列前n項和的函數(shù)性質(zhì)判斷取最大時的值.【題目詳解】令公差為,則,解得,所以,當時,取最大值.故選:B8、C【解題分析】設(shè)出未知數(shù),列出方程組,求出答案.【題目詳解】設(shè)甲、乙、丙分得的米數(shù)為x+d,x,x-d,則,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故選:C9、C【解題分析】根據(jù)正三角形的性質(zhì),結(jié)合拋物線的性質(zhì)進行求解即可.【題目詳解】如圖所示:準線l與橫軸的交點為,由拋物線的性質(zhì)可知:,因為若△MNF是邊長為2的正三角形,所以,,顯然,在直角三角形中,,故選:C10、A【解題分析】由同角公式求出,根據(jù)三角形面積公式求出,根據(jù)余弦定理求出,根據(jù)正弦定理求出.【題目詳解】因為,所以,因為,的面積為10,所以,故,從而,解得,由正弦定理得:.故選:A.【題目點撥】本題考查了同角公式,考查了三角形的面積公式,考查了余弦定理,考查了正弦定理,屬于基礎(chǔ)題.11、A【解題分析】利用充分條件和必要條件的定義判斷.【題目詳解】若方程表示圓,則,即,解得或,故“”是“方程是圓的方程”的充分不必要條件,故選:A12、A【解題分析】求出圓心到漸近線的距離,根據(jù)弦長建立關(guān)系即可求解.【題目詳解】雙曲線的漸近線方程為,即,則點到漸近線的距離為,因為弦長為,圓半徑為,所以,即,因為,所以,則雙曲線的離心率為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解題分析】設(shè),根據(jù)直線與圓的位置關(guān)系即可求出【題目詳解】由于,設(shè),所以點既在直線上,又在圓上,即直線與圓有交點,所以,,即故答案為:14、2【解題分析】根據(jù)向量垂直與數(shù)量積的等價關(guān)系,,計算即可.【題目詳解】因為,則其方向向量,,解得.故答案為:2.15、【解題分析】根據(jù)導數(shù)的幾何意義,結(jié)合切線方程,即可求解.【題目詳解】根據(jù)導數(shù)的幾何意義可知,,且,所以.故答案為:16、【解題分析】由橢圓方程和圓的方程可確定橢圓焦點、圓心和半徑;當最小時,可知,此時;根據(jù)橢圓性質(zhì)知,解方程可求得,進而得到離心率.【題目詳解】由橢圓方程知其右焦點為;由圓的方程知:圓心為,半徑為;當最小時,則最小,即,此時最??;此時,;為橢圓右頂點時,,解得:,橢圓的離心率.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解題分析】(1)坐標表示出、,利用向量夾角的坐標表示求夾角余弦值;(2)坐標表示出k+、k-2,利用向量垂直的坐標表示列方程求的值.【題目詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.18、(1)(2)【解題分析】(1)根據(jù)遞推關(guān)系式可得,再由等差數(shù)列的定義以及通項公式即可求解.(2)利用錯位相減法即可求解.【小問1詳解】(1),即,所以數(shù)列為等差數(shù)列,公差為1,首項為1,所以,即.【小問2詳解】令,所以,所以19、(1)證明見解析;(2)【解題分析】(1)取BC的中點O,連結(jié)AO、,在三角形中分別證明和,再利用勾股定理證明,結(jié)合線面垂直的判定定理可證明平面,再由面面垂直的判定定理即可證明結(jié)果.(2)建立空間直角坐標系,假設(shè)點M存在,設(shè),求出M點坐標,然后求出平面的法向量,利用空間向量的方法根據(jù)二面角的平面角為可求出的值.【題目詳解】(1)取BC的中點O,連結(jié)AO,,,為等腰直角三角形,所以,;側(cè)面為菱形,,所以三角形為為等邊三角形,所以,又,所以,又,滿足,所以;因為,所以平面,因為平面中,所以平面平面.(2)由(1)問知:兩兩垂直,以O(shè)為坐標原點,為軸,為軸,為軸建立空間之間坐標系.則,,,,若存在點M,則點M在上,不妨設(shè),則有,則,有,,設(shè)平面的法向量為,則解得:平面的法向量為則解得:或(舍)故存在點M,.【題目點撥】本題考查立體幾何探索是否存在的問題,屬于中檔題.方法點睛:(1)判斷是否存在的問題,一般先假設(shè)存在;(2)設(shè)出點坐標,作為已知條件,代入計算;(3)根據(jù)結(jié)果,判斷是否存在.20、(1);(2)證明見解析.【解題分析】(1)借助題設(shè)條件建立方程組求解;(2)依據(jù)題設(shè)運用直線與橢圓的位置關(guān)系探求.試題解析:(1)由,可得橢圓方程.(2)設(shè)的方程為,代入并整理得:.設(shè),,則,同理則.所以,是定值.考點:橢圓的標準方程幾何性質(zhì)及直線與橢圓的位置關(guān)系等有關(guān)知識的綜合運用【易錯點晴】本題考查的是橢圓的標準方程等基礎(chǔ)知識及直線與橢圓的位置關(guān)系等知識的綜合性問題.解答本題的第一問時,直接依據(jù)題設(shè)條件運用橢圓的幾何性質(zhì)和橢圓的有關(guān)概念建立方程組,進而求得橢圓的標準方程為;第二問的求解過程中,先設(shè)直線的方程為,再借助二次方程中根與系數(shù)之間的關(guān)系,依據(jù)坐標之間的關(guān)系進行計算探求,從而使得問題獲解.21、(1)(2)或.【解題分析】(1)選條件①,由準線方程得參數(shù),從而得拋物線方程;選條件②,由橢圓的焦點坐標與拋物線焦點坐標相同求得得拋物線方程;選條件③,由F,A,B三點共線時,,再由兩點間距離公式求得得拋物線方程;(2)求出點坐標,由點到直線距離公式求得到直線的距離,設(shè),,直線方程代入拋物線方程,判別式大于0保證相交,由韋達定理得,由弦長公式得弦長,再計算出三角形的面積后可解得【小問1詳解】選條件①:由準線方程為知,所以拋物線C的方程為選條件②:因為拋物線的焦點坐標為所以由已知得橢圓的一個焦點為.所以,又,所以,所以拋物線C的方程為選條件③:由題意可知得,當F,A,B三點共線時,,由兩點間距離公式,解得,所以拋物線C的方程為.【小問2詳解】把代入方程,可得,設(shè),,聯(lián)立,消去y可得,由,解得,又知,,所以,由到直線的距離為,所以,即,解得或經(jīng)檢驗均滿足,所以m的值為或.22、(1)證明見解析;(2).【解題分析】(1)由正方體性質(zhì)易得,根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論