福建省寧德市高中同心順聯(lián)盟校2022-2023學(xué)年數(shù)學(xué)高一下期末考試試題含解析_第1頁
福建省寧德市高中同心順聯(lián)盟校2022-2023學(xué)年數(shù)學(xué)高一下期末考試試題含解析_第2頁
福建省寧德市高中同心順聯(lián)盟校2022-2023學(xué)年數(shù)學(xué)高一下期末考試試題含解析_第3頁
福建省寧德市高中同心順聯(lián)盟校2022-2023學(xué)年數(shù)學(xué)高一下期末考試試題含解析_第4頁
福建省寧德市高中同心順聯(lián)盟校2022-2023學(xué)年數(shù)學(xué)高一下期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,若點是所在平面內(nèi)一點,且,則的最大值等于().A. B. C. D.2.設(shè)為銳角,,若與共線,則角()A.15° B.30° C.45° D.60°3.某快遞公司在我市的三個門店,,分別位于一個三角形的三個頂點處,其中門店,與門店都相距,而門店位于門店的北偏東方向上,門店位于門店的北偏西方向上,則門店,間的距離為()A. B. C. D.4.已知,那么()A. B. C. D.5.若,則一定有()A. B. C. D.6.在中,角,,所對的邊分別為,,,且邊上的高為,則的最大值是()A.8 B.6 C. D.47.已知是偶函數(shù),且時.若時,的最大值為,最小值為,則()A.2 B.1 C.3 D.8.函數(shù)是()A.奇函數(shù) B.非奇非偶函數(shù) C.偶函數(shù) D.既是奇函數(shù)又是偶函數(shù)9.已知平面向量,,,,在下列命題中:①存在唯一的實數(shù),使得;②為單位向量,且,則;③;④與共線,與共線,則與共線;⑤若且,則.正確命題的序號是()A.①④⑤ B.②③④ C.①⑤ D.②③10.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位二、填空題:本大題共6小題,每小題5分,共30分。11.已知正方體中,,分別為,的中點,那么異面直線與所成角的余弦值為______.12.已知一個鐵球的體積為,則該鐵球的表面積為________.13.計算:__________.14.計算:________.15.已知為直線上一點,過作圓的切線,則切線長最短時的切線方程為__________.16.觀察下列式子:你可歸納出的不等式是___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)向量,,其中.(1)若,求的值;(2)若,求的值.18.已知函數(shù)(),設(shè)函數(shù)在區(qū)間上的最大值為.(1)若,求的值;(2)若對任意的恒成立,試求的最大值.19.為了了解某省各景區(qū)在大眾中的熟知度,隨機(jī)從本省歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該省有哪幾個國家級旅游景區(qū)?”,統(tǒng)計結(jié)果如下表所示:組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);(3)在(2)中抽取的人中隨機(jī)抽取人,求所抽取的人中恰好沒有年齡段在的概率20.某醫(yī)學(xué)院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會所得線性回歸方程是否理想?參考公式:回歸直線的方程,其中,.21.已知函數(shù)(ω>0)的最小正周期為π.(Ⅰ)求ω的值和f(x)的單調(diào)遞增區(qū)間;(Ⅱ)若關(guān)于x的方程f(x)﹣m=0在區(qū)間[0,]上有兩個實數(shù)解,求實數(shù)m的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】以為坐標(biāo)原點,建立平面直角坐標(biāo)系,如圖所示,則,,,即,所以,,因此,因為,所以的最大值等于,當(dāng),即時取等號.考點:1、平面向量數(shù)量積;2、基本不等式.2、B【解析】由題意,,又為銳角,∴.故選B.3、C【解析】

根據(jù)題意,作出圖形,結(jié)合圖形利用正弦定理,即可求解,得到答案.【詳解】如圖所示,依題意知,,,由正弦定理得:,則.故選C.【點睛】本題主要考查了三角形的實際應(yīng)用問題,其中解答中根據(jù)題意作出圖形,合理使用正弦定理求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、C【解析】試題分析:由,得.故選B.考點:誘導(dǎo)公式.5、C【解析】

由題,可得,且,即,整理后即可得到作出判斷【詳解】由題可得,則,因為,則,,則有,所以,即故選C【點睛】本題考查不等式的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題6、D【解析】,這個形式很容易聯(lián)想到余弦定理:cosA,①而條件中的“高”容易聯(lián)想到面積,bcsinA,即a2=2bcsinA,②將②代入①得:b2+c2=2bc(cosA+sinA),∴=2(cosA+sinA)=4sin(A+),當(dāng)A=時取得最大值4,故選D.點睛:三角形中最值問題,一般轉(zhuǎn)化為條件最值問題:先根據(jù)正、余弦定理及三角形面積公式結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,利用基本不等式或函數(shù)方法求最值.在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.7、B【解析】

根據(jù)函數(shù)的對稱性得到原題轉(zhuǎn)化為直接求的最大和最小值即可.【詳解】因為函數(shù)是偶函數(shù),函數(shù)圖像關(guān)于y軸對稱,故得到時,的最大值和最小值,與時的最大值和最小值是相同的,故直接求的最大和最小值即可;根據(jù)對勾函數(shù)的單調(diào)性得到函數(shù)的最小值為,,故最大值為,此時故答案為:B.【點睛】這個題目考查了函數(shù)的奇偶性和單調(diào)性的應(yīng)用,屬于基礎(chǔ)題。對于函數(shù)的奇偶性,主要是體現(xiàn)函數(shù)的對稱性,這樣可以根據(jù)對稱性得到函數(shù)在對稱區(qū)間上的函數(shù)值的關(guān)系,使得問題簡化.8、C【解析】

利用誘導(dǎo)公式將函數(shù)的解析式化簡,然后利用定義判斷出函數(shù)的奇偶性.【詳解】由誘導(dǎo)公式得,該函數(shù)的定義域為,關(guān)于原點對稱,且,因此,函數(shù)為偶函數(shù),故選C.【點睛】本題考查函數(shù)奇偶性的判斷,解題時要將函數(shù)解析式進(jìn)行簡化,然后利用奇偶性的定義進(jìn)行判斷,考查分析問題和解決問題的能力,屬于基礎(chǔ)題.9、D【解析】

分別根據(jù)向量的平行、模、數(shù)量積即可解決?!驹斀狻慨?dāng)為零向量時不滿足,①錯;當(dāng)為零向量時④錯,對于⑤:兩個向量相乘,等于模相乘再乘以夾角的余弦值,與有可能夾角不一樣或者的模不一樣,兩個向量相等要保證方向、模都相同才可以,因此選擇D【點睛】本題主要考查了向量的共線,零向量。屬于基礎(chǔ)題。10、C【解析】

考查三角函數(shù)圖象平移,記得將變量前面系數(shù)提取.【詳解】,所以只需將向右平移個單位.所以選擇C【點睛】易錯題,一定要將提出,否則容易錯選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

異面直線所成角,一般平移到同一個平面求解.【詳解】連接DF,異面直線與所成角等于【點睛】異面直線所成角,一般平移到同一個平面求解.不能平移時通??紤]建系,利用向量解決問題.12、.【解析】

通過球的體積求出球的半徑,然后求出球的表面積.【詳解】球的體積為球的半徑球的表面積為:故答案為:【點睛】本題考查球的表面積與體積的求法,考查計算能力,屬于基礎(chǔ)題.13、【解析】

分子分母同除以,即可求出結(jié)果.【詳解】因為.故答案為【點睛】本題主要考查“”型的極限計算,熟記常用做法即可,屬于基礎(chǔ)題型.14、3【解析】

直接利用數(shù)列的極限的運算法則求解即可.【詳解】.故答案為:3【點睛】本題考查數(shù)列的極限的運算法則,考查計算能力,屬于基礎(chǔ)題.15、或【解析】

利用切線長最短時,取最小值找點:即過圓心作直線的垂線,求出垂足點.就切線的斜率是否存在分類討論,結(jié)合圓心到切線的距離等于半徑得出切線的方程.【詳解】設(shè)切線長為,則,所以當(dāng)切線長取最小值時,取最小值,過圓心作直線的垂線,則點為垂足點,此時,直線的方程為,聯(lián)立,得,點的坐標(biāo)為.①若切線的斜率不存在,此時切線的方程為,圓心到該直線的距離為,合乎題意;②若切線的斜率存在,設(shè)切線的方程為,即.由題意可得,化簡得,解得,此時,所求切線的方程為,即.綜上所述,所求切線方程為或,故答案為或.【點睛】本題考查過點的圓的切線方程的求解,考查圓的切線長相關(guān)問題,在過點引圓的切線問題時,要對直線的斜率是否存在進(jìn)行分類討論,另外就是將直線與圓相切轉(zhuǎn)化為圓心到直線的距離等于半徑長,考查分析問題與解決問題的能力,屬于中等題.16、【解析】

觀察三個已知式子的左邊和右邊,第1個不等式左邊可改寫成;第2個不等式左邊的可改寫成,右邊的可改寫成;第3個不等式的左邊可改寫成;據(jù)此可發(fā)現(xiàn)第個不等式的規(guī)律.【詳解】觀察三個已知式子的左邊和右邊,第1個式子可改寫為:,第2個式子可改寫為:,第3個式子可改寫為:,所以可歸納出第個不等式是:.故答案為:.【點睛】本題考查歸納推理,考查學(xué)生分析、解決問題的能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由向量垂直的坐標(biāo)運算求出,再構(gòu)造齊次式求解即可;(2)先由向量的模的運算求得,再由求解即可.【詳解】解:(1)若,則,得,所以;(2)因為,,則,因為,所以,即,化簡得,即,所以,因為,所以,則,所以,,所以,故.【點睛】本題考查了三角函數(shù)構(gòu)造齊次式求值,重點考查了兩角差的正弦公式及二倍角公式,屬中檔題.18、(1);(2)【解析】

(1)根據(jù)二次函數(shù)的單調(diào)性得在區(qū)間,單調(diào)遞減,在區(qū)間單調(diào)遞增,從得而得;(2)①當(dāng)時,在區(qū)間上是單調(diào)函數(shù),則,利用不等式的放縮法求得;②當(dāng)時,對進(jìn)行分類討論,求得;從而求得k的最大值為.【詳解】(1)當(dāng)時,,結(jié)合圖像可知,在區(qū)間,單調(diào)遞減,在區(qū)間單調(diào)遞增..(2)①當(dāng)時,在區(qū)間上是單調(diào)函數(shù),則,而,,,∴.②當(dāng)時,的對稱軸在區(qū)間內(nèi),則,又,(?。┊?dāng)時,有,,則,(ⅱ)當(dāng)時,有,則,所以,對任意的都有,綜上所述,時在區(qū)間的最大值為,所以k的最大值為.【點睛】本題考查一元二次函數(shù)的圖象與性質(zhì)、含參問題中的恒成立問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力,求解時注意討論的完整性.19、(1),,,;(2)分邊抽取2,3,1人;(3).【解析】

(1)根據(jù)數(shù)據(jù)表和頻率分布直方圖可計算得到第組的人數(shù)和頻率,從而可得總?cè)藬?shù);根據(jù)總數(shù)、頻率和頻數(shù)的關(guān)系,可分別計算得到所求結(jié)果;(2)首先確定第組的總?cè)藬?shù),根據(jù)分層抽樣原則計算即可得到結(jié)果;(3)首先計算得到基本事件總數(shù);再計算出恰好沒有年齡段在包含的基本事件個數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】(1)第組的人數(shù)為:人,第組的頻率為:第一組的頻率為第一組的人數(shù)為:第二組的頻率為第二組的人數(shù)為:第三組的頻率為第三組的人數(shù)為:第五組的頻率為第五組的人數(shù)為:(2)第組的總?cè)藬?shù)為:人第組抽取的人數(shù)為:人;第組抽取的人數(shù)為:人;第組抽取的人數(shù)為:人(3)在(2)中抽取的人中隨機(jī)抽取人,基本事件總數(shù)為:所抽取的人中恰好沒有年齡段在包含的基本事件個數(shù)為:所抽取的人中恰好沒有年齡段在的概率:【點睛】本題考查利用頻率分布直方圖計算總數(shù)、頻數(shù)和頻率、分層抽樣基本方法的應(yīng)用、古典概型計算概率問題;關(guān)鍵是熟練掌握頻率分布直方圖的相關(guān)知識,能夠通過頻率分布直方圖準(zhǔn)確計算出各組數(shù)據(jù)對應(yīng)的頻率.20、(1)(2)該協(xié)會所得線性回歸方程是理想的【解析】試題分析:(1)根據(jù)所給的數(shù)據(jù)求出x,y的平均數(shù),根據(jù)求線性回歸系數(shù)的方法,求出系數(shù),把和,代入公式,求出的值,寫出線性回歸方程;(2)根據(jù)所求的線性回歸方程,預(yù)報當(dāng)自變量為10和6時的值,把預(yù)報的值同原來表中所給的10和6對應(yīng)的值作差,差的絕對值不超過2,得到線性回歸方程理想.試題解析:解:(Ⅰ)由數(shù)據(jù)求得,,,由公式求得,所以,所以關(guān)于的線性回歸方程為.(Ⅱ)當(dāng)時,,;同樣,當(dāng)時,,.所以,該協(xié)會所得線性回歸方程是理想的.點睛:求線性回歸方程的步驟:(1)先把數(shù)據(jù)制成表,從表中計算出的值;(2)計算回歸系數(shù);(3)寫出線性回歸方程.進(jìn)行線性回歸分析時,要先畫出散點圖確定兩變量具有線性相關(guān)關(guān)系,然后利用公式求回歸系數(shù),得到回歸直線方程,最后再進(jìn)行有關(guān)的線性分析.21、(Ⅰ),函數(shù)的增區(qū)間為.(Ⅱ)【解析】

(Ⅰ)利用三角函數(shù)恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性、單調(diào)性,即可求得結(jié)論;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論