




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
WhatisMultivariateAnalysisMultivariateanalysisisthebestwaytosummarizeadatatableswithmanyvariablesbycreatingafewnewvariablescontainingmostoftheinformation.Thesenewvariablesarethenusedforproblemsolvinganddisplay,i.e.,classification,relationships,controlcharts,andmore.Thenewvariables,thescores,denotedbyt,arecreatedasweightedlinearcombinationsoftheoriginalvariables.Eachobservationshast-values.PCA,thebasicMVmethod,summarizesonedatatable.Plottingthescores(t’s)givesanoverviewoftheobservations(objects)PLSsummarizessimultaneously2datatables(Xthepredictorvariables)and
(Ytheresponsevariables)inordertodeveloparelationshipbetweenthemPCAandPLSarecalledProjectionmethods7/24/20231SIMCA-PGettingstarted.pptWhatisMultivariateAnalysisMWhatisaProjection?
Reductionofdimensionality,modelinlatentvariablesAlgebraicallySummarizestheinformationintheobservationsasafewnew(latent)variablesGeometricallyTheswarmofpointsinaKdimensionalspace
(K=numberofvariables)isapproximatedbya(hyper)planeandthepointsareprojectedonthatplane.7/24/20232SIMCA-PGettingstarted.pptWhatisaProjection?
ReductioNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)t:theXscores;thenewsummarizingvariables(coordinatesinthehyperplaneofX-space)u:theYscoresinPLS;thenewsummarizingvariables(coordinatesinthehyperplaneofY-space,whenYismultidimensional)p:thePCloadings.ThesearetheweightsthatinPCAcombinetheoriginalvariablesinXtoformthenewvariables,scorest.w*:thePLSweights.ThesearetheweightsthatinPLScombinetheoriginalvariablesinXtoformthenewvariables,scorest.c:theweightsusedtocombinetheY'stoformthescoresu.7/24/20233SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotation
Eachobshasvaluesoft(andu)–Eachvariablehasvaluesofp(andwandc)OneComponentconsistsofonetandonep(PCA)ort,p,w,u,c(PLS).ThetotalnumberofcomponentsisA.Model:Thedataareapproximatedbyaplaneorhyperplane,(themodel)withasmanydimensionsascomponentsextracted.DModX:alsocalledDistancetothemodel,isthedistanceofagivenobservationtothemodelplane.T2:Hotelling’sT2,isacombinationofallthescores(t)ofallAcomponents.T2measureshowfarawayanobservationisfromthecenterofaPCorPLSmodel.7/24/20234SIMCA-PGettingstarted.pptNotation
EachobshasvaluesoNotationR2X:ThefractionofthevariationoftheXvariablesexplainedbythemodel.R2Y:ThefractionofthevariationoftheYvariablesexplainedbythemodel.Q2X:ThefractionofthevariationoftheXvariablespredictedbythemodel.Q2Y:ThefractionofthevariationoftheYvariablespredictedbythemodel.7/24/20235SIMCA-PGettingstarted.pptNotationR2X:ThefractionofMVA–SIMCARoadMap
MethodsavailablePreprocessing;trimmingandWinsorizing(takeawayextremes)PrincipalComponentsAnalysis(PCA;overviewofdata)ProjectiontoLatentStructures(PLS;relationshipsXY)SimcaclassificationPLS-discriminantanalysis(classification)HierarchicalPCAandPLSPredictionsandclassificationofnewdatausinganymodel7/24/20236SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
MethodsaMVA–SIMCARoadMap
Dataset=alldata;Workset=workingcopyofdataWorkmainmenusfromlefttorightandpop-upmenusfromuptodownPlot/Listallowsyoutoplotorlistanythingnon-standard,notfoundunderAnalysis7/24/20237SIMCA-PGettingstarted.pptMVA–SIMCARoadMap
DatasetStepsinusingSIMCA-PusingthewizardStartanewprojectandimportthedatasetUsetheworksetwizardtoguidethroughbuildingtheworksetandfittingthemodelGeneratethereportwritertowalkthroughthemodelresultsandinterpretationWhendisplayingSimca-PplotsalwaysusetheAnalysisadvisertoguideyou.7/24/20238SIMCA-PGettingstarted.pptStepsinusingSIMCA-PusingWorksetwizardonON7/24/20239SIMCA-PGettingstarted.pptWorksetwizardonON7/24/20239SWorksetwizard7/24/202310SIMCA-PGettingstarted.pptWorksetwizard7/24/202310SIMCAAutotransformvariables
Totransformallvariablesifanyneeded,markthecheckbox7/24/202311SIMCA-PGettingstarted.pptAutotransformvariables
TotraAutomaticcreationofclassesforclassificationordiscrimination7/24/202312SIMCA-PGettingstarted.pptAutomaticcreationofclassesSelectionandFitofmodel7/24/202313SIMCA-PGettingstarted.pptSelectionandFitofmodel7/24Reportwriter
Walksyouthroughthemodelresultswithinterpretation:File|GenerateReport7/24/202314SIMCA-PGettingstarted.pptReportwriter
WalksyouthrouStepsinUsingSIMCA-P,AdvancedModeStartanewprojectandimportthedatasetExploreandpreprocessthedataMakeworkingcopyofselecteddata(workset)formodelbuildingSpecifymodeltypeandfitittotheworksetReviewfit(plots,diagnostics,coefficients,etc.)PredictionsGenerateReport7/24/202315SIMCA-PGettingstarted.pptStepsinUsingSIMCA-P,Advanc1a.FileNew
StartinganewprojectSelectthedatafilecontainingtherawdataoftheprojectdirectory,filetype(XLS,DIF,TXT,…..),filenameAWizardopens(seenextpage)allowingyoutospecify(optionally)therowcontainingtheVariablenames,and(optionally)thecolumnswiththeObs.NumbersandNamesHere(Commands)youcanalsodoadditionalthingssuchastransposingtheinputdatamatrixUsesimplemodewithworksetwizardAtthelastWizardpage,youcan(optionally)specifyanothernameanddirectoryfortheproject.AmapofthemissingdataisshownTheWizardfinishesandputsyouintheSimca-windowAstartingworkset(M1,alldata,allX-s,UV-scaled)isready7/24/202316SIMCA-PGettingstarted.ppt1a.FileNew
Startinganewpr1b.ThesecondscreenoftheWizard7/24/202317SIMCA-PGettingstarted.ppt1b.ThesecondscreenoftheW2.LookingatthedataWiththedatasettableopen(Datasetedit):QuickInfo(bothvarandobswindowscanbeopen)variablesobservationsMovingthecursorinthedatasettableupanddown,orsidewise,changesthedisplayedvariableandobservationInthequickinfooptionsyoucanspecifywhatyouwanttolookat(histograms,auto-correlations,…),aswellaswhichitemsshouldbethebasisfortheplots7/24/202318SIMCA-PGettingstarted.ppt2.LookingatthedataWiththeViewvariablesorObservations,Trim,etc.
QuickInfo7/24/202319SIMCA-PGettingstarted.pptViewvariablesorObservations3.Prepareaworkcopy:TheWorkset
SimpleModewithguidance,orAdvancedModeInWorkset,youprepareaworkingcopyofthepartofthedatayouwillanalyze,i.e.,useasthebasisofyourmodel.Hereyouspecifytransformation,scaling,androlesofvariables(XorYorexcluded).Also,youselecttheobservations(your“trainingset”).Youcanstartwiththepreviousworkset(Workset/Newasmodelxx)andthenmodifyit,e.g.,excludingobservations.WhateveryoudoinWorksetdoesNOTtouchtherawdataNotethatoutliersarejustspecifiedas“notincluded”inthenextworkset(the“polished”data).OutliersareNEVERremovedfromtherawdataset.7/24/202320SIMCA-PGettingstarted.ppt3.Prepareaworkcopy:TheWoWorkset:twoModes,SimpleandAdvanced7/24/202321SIMCA-PGettingstarted.pptWorkset:twoModes,Simpleand4.Analysis
FittheModeltotheWorksetDataEithermenu“Analysis/Autofit”orFastButtonAmodelwithappropriatenumberofcomponentsisfoundIfnothinghappens,getthetwofirstcomponents
(alsomenuorfastbutton)Atableappearsshowingthemodel,componentbycomponent.Morecomponentscanbeadded(menuorfastbutton)Doubleclickonamodeltospecifyatitle7/24/202322SIMCA-PGettingstarted.ppt4.Analysis
FittheModeltot5.Plotresults
Analysis/menu(orfastbuttons)Summary/X/Y-OverviewshowsR2andQ2forallvar.sScores–scatterplot,t1-t2andt1-u1&t2-u2(PLS)Loadings–scatterplot(p1-p2froPCA,wc1-wc2forPLS)DistancetoModel–lineplotContributionplotstointerpretinterestingobservations,e.g.outliers,jumps,…Forallplots,therightmousebutton,propertiesallowschoiceofplotmarkers,andmoreThegraphicaltoolboxallowsfurthermodifications7/24/202323SIMCA-PGettingstarted.ppt5.Plotresults
Analysis/men6a.Outlierswereseeninthescoreplot
(welloutsidetheHotellingellipse)Startanotherworkset (eitherfromWorkset/Newasmodelxx,orusingthegraphicaltool-boxtoremoveoutliersfromthescoreplot)NotethatoutliersshouldNOTbedeletedfromthedatabyEdit/DatasetWhenthenewworksetisall-right,returnto“4.Analysis”tofitanewmodeltothenewworkset (fastbuttonorAnalysis/Autofit)7/24/202324SIMCA-PGettingstarted.ppt6a.Outlierswereseeninthe6b.Nooutlierswereseeninthescoreplots
(ortheyhavebeenexcluded,andthescoreplotsnowlookall-right)Now,interpretthemodelLookat“patterns”,trends,etc.,inthescoreplotsInspecttheloadingplotstointerprettheabovepatternsLookatDModXWhatdothesepatternssayabouttheobjectiveoftheinvestigation?7/24/202325SIMCA-PGettingstarted.ppt6b.NooutlierswereseenintAnalysisAdvisortounderstandandinterpretmodelresults7/24/202326SIMCA-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年金屬硫蛋白(MT)、高純度MT、MT多糖合作協(xié)議書
- 考點(diǎn)精煉2025年信息系統(tǒng)項目管理師試題及答案
- 軟件設(shè)計師考試中的時間管理試題及答案
- 企業(yè)戰(zhàn)略決策中的風(fēng)險防范機(jī)制
- 高效通關(guān)的2025軟件設(shè)計師考試試題及答案
- 人工智能與大數(shù)據(jù)融合2025:互聯(lián)網(wǎng)廣告精準(zhǔn)投放算法效果分析報告
- 探索西方政治制度的多元價值觀試題及答案
- 基于云計算的網(wǎng)絡(luò)架構(gòu)試題及答案
- 深度剖析西方政治制度的優(yōu)劣試題及答案
- 網(wǎng)絡(luò)工程師實(shí)踐題型試題及答案
- 2025-2030中國市政工程建設(shè)行業(yè)市場發(fā)展前瞻及投資戰(zhàn)略研究報告
- 2025年客戶體驗管理:存量時代銀行的核心競爭力白皮書-瑞和數(shù)智
- 數(shù)據(jù)治理與數(shù)據(jù)質(zhì)量管理試題及答案
- 江蘇省南京玄武區(qū)十三中學(xué)集團(tuán)科利華2025屆七下生物期末綜合測試試題含解析
- 2025年社區(qū)工作的理論與實(shí)務(wù)考試題及答案
- 《設(shè)計課件:構(gòu)建高效數(shù)據(jù)集教程》
- 2025海南中考:歷史高頻考點(diǎn)
- 國家開放大學(xué)2025年《創(chuàng)業(yè)基礎(chǔ)》形考任務(wù)3答案
- 粒子加速器用30-4000 MHz級固態(tài)功率源系統(tǒng) 征求意見稿
- SL631水利水電工程單元工程施工質(zhì)量驗收標(biāo)準(zhǔn)第1部分:土石方工程
- 2025年湖南出版中南傳媒招聘筆試參考題庫含答案解析
評論
0/150
提交評論