八年級數(shù)學(xué)下冊課件簡短8篇_第1頁
八年級數(shù)學(xué)下冊課件簡短8篇_第2頁
八年級數(shù)學(xué)下冊課件簡短8篇_第3頁
八年級數(shù)學(xué)下冊課件簡短8篇_第4頁
八年級數(shù)學(xué)下冊課件簡短8篇_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第八年級數(shù)學(xué)下冊課件簡短8篇八年級數(shù)學(xué)下冊課件簡短8篇

初二數(shù)學(xué)課件怎么寫。象形字的構(gòu)字方法是描繪物體輪廓,突出物體特征。作為原始的造字方法,象形字對了解和識記現(xiàn)今使用的漢字有重大意義。下面小編給大家?guī)黻P(guān)于八年級數(shù)學(xué)下冊課件簡短,希望會對大家的工作與學(xué)習(xí)有所幫助。

八年級數(shù)學(xué)下冊課件簡短篇1

課題名稱:完全平方公式(1)

一、內(nèi)容簡介

本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

關(guān)鍵信息:

1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

二、學(xué)習(xí)者分析:

1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

三、教學(xué)/學(xué)習(xí)目標(biāo)及其對應(yīng)的課程標(biāo)準(zhǔn):

(一)教學(xué)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。

2、會推導(dǎo)完全平方公式,并能運用公式進(jìn)行簡單的計算。

(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理

數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同

角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難

和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

四、教育理念和教學(xué)方式:

1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

教學(xué)是師生交往、積極互動、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時

候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。

2、采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式

展開教學(xué)。

3、教學(xué)評價方式:

(1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動中的主

動參與程度與合作交流意識,及時給與鼓勵、強(qiáng)化、指導(dǎo)和矯正。

(2)通過判斷和舉例,給學(xué)生更多機(jī)會,在自然放松的狀態(tài)下,

揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學(xué)情,調(diào)查教學(xué)。

(3)通過課后訪談和作業(yè)分析,及時查漏補(bǔ)缺,確保達(dá)到預(yù)期的

教學(xué)效果。

五、教學(xué)媒體:多媒體六、教學(xué)和活動過程:

教學(xué)過程設(shè)計如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結(jié)果的項數(shù)特點。

(3)三項系數(shù)的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、小試牛刀

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學(xué)生小結(jié)]

你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠(yuǎn)為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、冒險島:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

〈六〉、學(xué)生自我評價

[小結(jié)]通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?

本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。

〈七〉[作業(yè)]P34隨堂練習(xí)P36習(xí)題

八年級數(shù)學(xué)下冊課件簡短篇2

總體說明:

完全平方公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié).同時,完全平方公式的推導(dǎo)是初中數(shù)學(xué)中運用推理方法進(jìn)行代數(shù)式恒等變形的開端,通過完全平方公式的學(xué)習(xí)對簡化某些整式的運算、培養(yǎng)學(xué)生的求簡意識有較大好處.而且完全平方公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對學(xué)生提高運算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運算、解一元二次方程以及二次函數(shù)的恒等變形的重要基礎(chǔ),同時也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的作用.因此學(xué)好完全平方公式對于代數(shù)知識的后繼學(xué)習(xí)具有相當(dāng)重要的意義.

本節(jié)是北師大版七年級數(shù)學(xué)下冊第一章《整式的運算》的第8小節(jié),占兩個課時,這是第一課時,它主要讓學(xué)生經(jīng)歷探索與推導(dǎo)完全平方公式的過程,培養(yǎng)學(xué)生的符號感與推理能力,讓學(xué)生進(jìn)一步體會數(shù)形結(jié)合的思想在數(shù)學(xué)中的作用.

一、學(xué)生學(xué)情分析

學(xué)生的技能基礎(chǔ):學(xué)生通過對本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎(chǔ)知識的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ).

學(xué)生活動經(jīng)驗基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過程,獲得了一些數(shù)學(xué)活動的經(jīng)驗,培養(yǎng)了一定的符號感和推理能力;同時在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.

二、教學(xué)目標(biāo)

知識與技能:

(1)讓學(xué)生會推導(dǎo)完全平方公式,并能進(jìn)行簡單的應(yīng)用.

(2)了解完全平方公式的幾何背景.

數(shù)學(xué)能力:

(1)由學(xué)生經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展學(xué)生的符號感與推理能力.

(2)發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.

情感與態(tài)度:

將學(xué)生頭腦中的前概念暴露出來進(jìn)行分析,避免形成教學(xué)上的“相異構(gòu)想”.

三、教學(xué)重難點

教學(xué)重點:1、完全平方公式的推導(dǎo);

2、完全平方公式的應(yīng)用;

教學(xué)難點:1、消除學(xué)生頭腦中的前概念,避免形成“相異構(gòu)想”;

2、完全平方公式結(jié)構(gòu)的認(rèn)知及正確應(yīng)用.

四、教學(xué)設(shè)計分析

本節(jié)課設(shè)計了十一個教學(xué)環(huán)節(jié):學(xué)生練習(xí)、暴露問題——驗證——推廣到一般情況,形成公式——數(shù)形結(jié)合——進(jìn)一步拓廣——總結(jié)口訣——公式應(yīng)用——學(xué)生反饋——學(xué)生PK——學(xué)生反思——鞏固練習(xí).

第一環(huán)節(jié):學(xué)生練習(xí)、暴露問題

活動內(nèi)容:計算:(a+2)2

設(shè)想學(xué)生的做法有以下幾種可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正確做法;

針對這幾種結(jié)果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?

活動目的:在很多學(xué)生的頭腦中,認(rèn)為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:

(a+2)2=a2+22,如果不將這種定式思維__,就很難建立起一個正確的概念;這一環(huán)節(jié)的目的就是讓學(xué)生的這種錯誤或其它錯誤充分暴露出來,并讓學(xué)生充分認(rèn)識到自己原有的定式思維是錯誤的,為下一步構(gòu)建新的思維模式埋下伏筆.

第二環(huán)節(jié):驗證(a+2)2=a2–4a+22

活動內(nèi)容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

活動目的:在前一環(huán)節(jié)已經(jīng)打破了學(xué)生的原有的思維定式的基礎(chǔ)上,給學(xué)生建立正確的思維方法,避免形成“相異構(gòu)想”.

第三環(huán)節(jié):推廣到一般情況,形成公式

活動內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活動目的:讓學(xué)生經(jīng)歷從特殊到一般的探究過程,體驗到發(fā)現(xiàn)的快樂.

第四環(huán)節(jié):數(shù)形結(jié)合

活動內(nèi)容:設(shè)問:在多項式的乘法中,很多公式都都可以用幾何圖形進(jìn)行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?

展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.

學(xué)生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)

活動目的:讓學(xué)生進(jìn)一步認(rèn)識到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機(jī)地結(jié)合在一起,從而發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.

第五環(huán)節(jié):進(jìn)一步拓廣

活動內(nèi)容:推導(dǎo)兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活動目的:讓學(xué)生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會到符號差異帶來的結(jié)果差異,由第二種推導(dǎo)方法體會到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應(yīng)用.

第六環(huán)節(jié):總結(jié)口訣、認(rèn)識特征

活動內(nèi)容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;

②公式中的a、b可以是任意一個代數(shù)式(數(shù)、字母、單項式、多項式)

口訣:首平方,尾平方,首尾相乘的兩倍在中央.

活動目的:認(rèn)識完全平方公式的特征,總結(jié)出完全平方公式的口訣,便于學(xué)生理解與記憶,避免學(xué)生在應(yīng)用該公式中出現(xiàn)錯誤.

第七環(huán)節(jié):公式應(yīng)用

活動內(nèi)容:例:計算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+

活動目的:在前幾個環(huán)節(jié)中,學(xué)生對完全平方公式已經(jīng)有了感性認(rèn)識,通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習(xí),使學(xué)生逐步經(jīng)歷認(rèn)識——模仿——再認(rèn)識.從而上升到理性認(rèn)識的階段.

第八環(huán)節(jié):隨堂練習(xí)

活動內(nèi)容:計算:①;②;③(n+1)2–n2

活動目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對完全平方公式的理解是否到位,完全平方公式的應(yīng)用是否得當(dāng),以便教師能及時地進(jìn)行查缺補(bǔ)漏.

第九環(huán)節(jié):學(xué)生PK

活動內(nèi)容:每個學(xué)生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準(zhǔn)確性率高,速度快.

活動目的:活躍課堂氣氛,激起學(xué)生的好勝心,進(jìn)一步鞏固學(xué)生對完全平方公式的理解與應(yīng)用.

第十環(huán)節(jié):學(xué)生反思

活動內(nèi)容:通過今天這堂課的學(xué)習(xí),你有哪些收獲?

收獲1:認(rèn)識了完全平方公式,并能簡單應(yīng)用;

收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異;

收獲3:感受到數(shù)形結(jié)合的數(shù)學(xué)思想在數(shù)學(xué)中的作用.

活動目的:通過對一堂課的歸納與總結(jié),鞏固學(xué)生對完全平方公式的認(rèn)識,體會數(shù)學(xué)思想的精妙.

第十一環(huán)節(jié):布置作業(yè):

課本P43習(xí)題1.13

八年級數(shù)學(xué)下冊課件簡短篇3

教學(xué)目標(biāo)

1、知識與技能:體會公式的發(fā)現(xiàn)和推導(dǎo)過程,了解公式的幾何背景,理解公式的本質(zhì),會應(yīng)用公式進(jìn)行簡單的計算.

2、過程與方法:通過讓學(xué)生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達(dá)能力.培養(yǎng)學(xué)生的數(shù)形結(jié)合能力.

3、情感態(tài)度價值觀:體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動中獲得成功的體驗與喜悅,樹立學(xué)習(xí)自信心.

教學(xué)重難點

教學(xué)重點:

1、對公式的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點、語言表述(學(xué)生自己的語言)、幾何解釋.

2、會運用公式進(jìn)行簡單的計算.

教學(xué)難點:

1、完全平方公式的推導(dǎo)及其幾何解釋.

2、完全平方公式的結(jié)構(gòu)特點及其應(yīng)用.

教學(xué)工具

課件

教學(xué)過程

一、復(fù)習(xí)舊知、引入新知

問題1:請說出平方差公式,說說它的結(jié)構(gòu)特點.

問題2:平方差公式是如何推導(dǎo)出來的?

問題3:平方差公式可用來解決什么問題,舉例說明.

問題4:想一想、做一做,說出下列各式的結(jié)果.

(1)(a+b)2(2)(a-b)2

(此時,教師可讓學(xué)生分別說說理由,并且不直接給出正確評價,還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣.)

二、創(chuàng)設(shè)問題情境、探究新知

一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(如圖)

(1)四塊面積分別為:、、、;

(2)兩種形式表示實驗田的總面積:

①整體看:邊長為的大正方形,S=;

②部分看:四塊面積的和,S=.

總結(jié):通過以上探索你發(fā)現(xiàn)了什么?

問題1:通過以上探索學(xué)習(xí),同學(xué)們應(yīng)該知道我們提出的問題4正確的結(jié)果是什么了吧?

問題2:如果還有同學(xué)不認(rèn)同這個結(jié)果,我們再看下面的問題,繼續(xù)探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證.

(教學(xué)過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學(xué)生大膽猜想,發(fā)表見解,但要驗證)

問題3:你能說說(a+b)2=a2+2ab+b2

這個等式的結(jié)構(gòu)特點嗎?用自己的語言敘述.

(結(jié)構(gòu)特點:右邊是二項式(兩數(shù)和)的平方,右邊有三項,是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)

問題4:你能根據(jù)以上等式的結(jié)構(gòu)特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證.

總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.

問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?

語言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.

強(qiáng)化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.

三、例題講解,鞏固新知

例1:利用完全平方公式計算

(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

解:(2x-3)2=(2x)2-2o(2x)o3+32

=4x2-12x+9

(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

=16x2+40xy+25y2

(mn-a)2=(mn)2-2o(mn)oa+a2

=m2n2-2mna+a2

交流總結(jié):運用完全平方公式計算的一般步驟

(1)確定首、尾,分別平方;

(2)確定中間系數(shù)與符號,得到結(jié)果.

四、練習(xí)鞏固

練習(xí)1:利用完全平方公式計算

練習(xí)2:利用完全平方公式計算

練習(xí)3:

(練習(xí)可采用多種形式,學(xué)生上黑板板演,師生共同評價.也可學(xué)生獨立完成后,學(xué)生互相批改,力求使學(xué)生對公式完全掌握,如有學(xué)生出現(xiàn)問題,學(xué)生、教師應(yīng)及時幫助.)

五、變式練習(xí)

六、暢談收獲,歸納總結(jié)

1、本節(jié)課我們學(xué)習(xí)了乘法的完全平方公式.

2、我們在運用公式時,要注意以下幾點:

(1)公式中的字母a、b可以是任意代數(shù)式;

(2)公式的結(jié)果有三項,不要漏項和寫錯符號;

(3)可能出現(xiàn)①②這樣的錯誤.也不要與平方差公式混在一起.

七、作業(yè)設(shè)置

八年級數(shù)學(xué)下冊課件簡短篇4

一、教材分析:

反比例函數(shù)的圖象與性質(zhì)是對正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)和對比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。本課時的學(xué)習(xí)是學(xué)生對函數(shù)的圖象與性質(zhì)一個再知的過程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對反比例函數(shù)有一個形象和直觀的認(rèn)識。

二、教學(xué)目標(biāo)分析

根據(jù)二期課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動起學(xué)生參與教學(xué)過程”的精神。在教學(xué)設(shè)計上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識的同時激發(fā)學(xué)生的學(xué)習(xí)興趣和探究欲望,引導(dǎo)學(xué)生積極參與和主動探索。

因此把教學(xué)目標(biāo)確定為:1.掌握反比例函數(shù)的概念,能夠根據(jù)已知條件求出反比例函數(shù)的解析式;學(xué)會用描點法畫出反比例函數(shù)的圖象;掌握圖象的特征以及由函數(shù)圖象得到的函數(shù)性質(zhì)。2.在教學(xué)過程中引導(dǎo)學(xué)生自主探索、思考及想象,從而培養(yǎng)學(xué)生觀察、分析、歸納的綜合能力。3.通過學(xué)習(xí)培養(yǎng)學(xué)生積極參與和勇于探索的精神。

三、教學(xué)重點難點分析

本堂課的重點是掌握反比例函數(shù)的定義、圖象特征以及函數(shù)的性質(zhì);

難點則是如何抓住特征準(zhǔn)確畫出反比例函數(shù)的圖象。

為了突出重點、突破難點。我設(shè)計并制作了能動態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的性質(zhì)。

四、教學(xué)方法

鑒于教材特點及初二學(xué)生的年齡特點、心理特征和認(rèn)知水平,設(shè)想采用問題教學(xué)法

和對比教學(xué)法,用層層推進(jìn)的提問啟發(fā)學(xué)生深入思考,主動探究,主動獲取知識。同時注意與學(xué)生已有知識的聯(lián)系,減少學(xué)生對新概念接受的困難,給學(xué)生充分的自主探索時間。通過教師的引導(dǎo),啟發(fā)調(diào)動學(xué)生的積極性,讓學(xué)生在課堂上多活動、多觀察,主動參與到整個教學(xué)活動中來,組織學(xué)生參與“探究——討論——交流——總結(jié)”的學(xué)習(xí)活動過程,同時在教學(xué)中,還充分利用多媒體教學(xué),通過演示,操作,觀察,練習(xí)等師生的共同活動中啟發(fā)學(xué)生,讓每個學(xué)生動手、動口、動眼、動腦,培養(yǎng)學(xué)生直覺思維能力。

五、學(xué)法指導(dǎo)

本堂課立足于學(xué)生的“學(xué)”,要求學(xué)生多動手,多觀察,從而可以幫助學(xué)生形成分析、

對比、歸納的思想方法。在對比和討論中讓學(xué)生在“做中學(xué)”,提高學(xué)生利用已學(xué)知識去主動獲取新知識的能力。因此在課堂上要采用積極引導(dǎo)學(xué)生主動參與,合作交流的方法組織教學(xué),使學(xué)生真正成為教學(xué)的主體,體會參與的樂趣,成功的喜悅,感知數(shù)學(xué)的奇妙。

六、教學(xué)過程

(一)復(fù)習(xí)引入——反函數(shù)解析式

練習(xí)1:寫出下列各題的關(guān)系式:

(1)正方形的周長C和它的一邊的長a之間的關(guān)系

(2)運動會的田徑比賽中,運動員小王的平均速度是8米/秒,他所跑過的路程s和所用時間t之間的關(guān)系

(3)矩形的面積為10時,它的長x和寬y之間的關(guān)系

(4)王師傅要生產(chǎn)100個零件,他的工作效率x和工作時間t之間的關(guān)系

問題1:請大家判斷一下,在我們寫出來的這些關(guān)系式中哪些是正比例函數(shù)?

問題1主要是復(fù)習(xí)正比例函數(shù)的定義,為后面學(xué)生運用對比的方法給出反比例函數(shù)的定義打下基礎(chǔ)。

問題2:那么請大家再仔細(xì)觀察一下,其余兩個函數(shù)關(guān)系式有什么共同點嗎?

通過問題2來引出反比例函數(shù)的解析式,請學(xué)生對比正比例函數(shù)的定

義來給出反比例函數(shù)的定義,這不僅有助于對舊知識的復(fù)習(xí)和鞏固,同時還可以培養(yǎng)學(xué)生的對比和探究能力。

例題1:已知變量y與x成反比例,且當(dāng)x=2時,y=9

(1)寫出y與x之間的函數(shù)解析式

(2)當(dāng)x=3.5時,求y的值

(3)當(dāng)y=5時,求x的值

通過對例1的學(xué)習(xí)使學(xué)生掌握如何根據(jù)已知條件來求出反比例函數(shù)的解析式。在

解題過程中,引導(dǎo)學(xué)生運用在求正比例函數(shù)的解析式時用到的“待定系數(shù)法”,先設(shè)反比例函數(shù)為,再把相應(yīng)的x,y值代入求出k,k值的確定,函數(shù)解析式也就確定了。

課堂練習(xí):已知x與y成反比例,根據(jù)以下條件,求出y與x之間的函數(shù)關(guān)系式

(1)x=2,y=3(2)x=,y=

通過此題,對學(xué)生掌握如何根據(jù)已知條件去求反比例函數(shù)的解析式的學(xué)習(xí)情況做一個簡單的反饋。

(二)探究學(xué)習(xí)1——函數(shù)圖象的畫法

問題3:如何畫出正比例函數(shù)的圖象?

通過問題3來復(fù)習(xí)正比例函數(shù)圖象的畫法主要分為列表、描點、連線三個步驟,為學(xué)習(xí)反比例函數(shù)圖像的畫法打下基礎(chǔ)。

問題4:那反比例函數(shù)的圖象應(yīng)該怎樣去畫呢?

在教學(xué)過程中可以引導(dǎo)學(xué)生仿照正比例函數(shù)圖象的的畫法。

設(shè)想的教學(xué)設(shè)計是:

(1)引導(dǎo)學(xué)生運用在畫正比例函數(shù)圖象中所學(xué)到的方法,分小組討論嘗試,采用列表、描點、連線的方法畫出函數(shù)和的圖象;

(2)老師邊巡視,邊指導(dǎo),用實物投影儀反映一些學(xué)生在函數(shù)圖象中出現(xiàn)的典型錯誤,和學(xué)生一起找出錯誤的地方,分析原因;

(3)隨后老師在黑板上演示畫好反比例函數(shù)圖像的步驟,展示正確的函數(shù)圖象,引導(dǎo)學(xué)生觀察其圖象特征(雙曲線有兩個分支)。

初二學(xué)生是首次接觸到雙曲線這種比較特殊函數(shù)圖象,設(shè)想學(xué)生可能會在下面幾個環(huán)節(jié)中出錯:

(1)在“列表”這一環(huán)節(jié)

在取點時學(xué)生可能會取零,在這里可以引導(dǎo)學(xué)生結(jié)合代數(shù)的方法得出x不能為零。也可能由于在取點時的不恰當(dāng),導(dǎo)致函數(shù)圖象的不完整、不對稱。在這里應(yīng)該要指導(dǎo)學(xué)生在列表時,自變量x的取值可以選取絕對值相等而符號相反的數(shù),相應(yīng)的就得到絕對相等而符號相反的對應(yīng)的函數(shù)值,這樣可以簡化計算的手續(xù),又便于在坐標(biāo)平面內(nèi)找到點。

(2)在“連線”這一環(huán)節(jié)

學(xué)生畫的點與點之間連線可能會有端點,未能用光滑的線條連接。因而在這里要特別要強(qiáng)調(diào)在將所選取的點連結(jié)時,應(yīng)該是“光滑曲線”,為以后學(xué)習(xí)二次函數(shù)的圖像打下基礎(chǔ)。為了使函數(shù)圖象清晰明顯,可以引導(dǎo)學(xué)生注意盡量選取較多的自變量x的值和對應(yīng)的函數(shù)值y,以便在坐標(biāo)平面內(nèi)得到較多的“點”,畫出曲線。

從而引導(dǎo)學(xué)生畫出正確的函數(shù)圖象。

(3)圖象與x軸或y軸相交

在這里我認(rèn)為可以埋下一個伏筆,給學(xué)生留下一個懸念,為后面學(xué)習(xí)函數(shù)的性質(zhì)打下基礎(chǔ)。

需要說明的是:利用多媒體課件學(xué)習(xí)能吸引學(xué)生的注意力,引起學(xué)生進(jìn)一步學(xué)習(xí)的興趣。不過,盡管多媒體的演示既快又準(zhǔn)確,我認(rèn)為在學(xué)生第一次學(xué)畫反比例函數(shù)圖象的過程中,老師還是應(yīng)該在黑板上認(rèn)真示范畫出圖象的每一個步驟,畢竟多媒體還是不能替代我們平時老師在黑板上板書。

鞏固練習(xí):畫出函數(shù)和的圖象

通過鞏固練習(xí),讓學(xué)生再次動手畫出函數(shù)圖象,改正在初次畫圖象時出現(xiàn)在一些問題。老師使用函數(shù)圖象的課件,用屏幕顯示的函數(shù)圖象驗證學(xué)生畫出的函數(shù)圖象的準(zhǔn)確性。

(三)探究學(xué)習(xí)2——函數(shù)圖象性質(zhì)

1、圖象的分布情況

問題5:請大家回憶一下正比例函數(shù)的分布情況是怎么樣的呢?

提出問題5主要是起到鞏固復(fù)習(xí),為引導(dǎo)學(xué)生學(xué)習(xí)反比例函數(shù)圖象的分布情況打下基礎(chǔ)。

問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?

在這一環(huán)節(jié)中的設(shè)計:

(1)引導(dǎo)學(xué)生對比正比例函數(shù)圖象的分布,啟發(fā)他們主動探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時間;

(2)充分運用多媒體的優(yōu)勢進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動態(tài)演變過程。把不同的函數(shù)圖象集中到一個屏幕中,便于學(xué)生對比和探究。學(xué)生通過觀察及對比,對反比例函數(shù)圖象的分布與k的關(guān)系有一個直觀的了解;

(3)組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k0時,函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k0時,函數(shù)圖象的兩支分別在第二、四象限內(nèi)。

2、圖象的變化情況

問題7:正比例函數(shù)圖象的變化情況是怎么樣的呢?

提出問題7主要是起到鞏固復(fù)習(xí),為引導(dǎo)學(xué)生學(xué)習(xí)反比例函數(shù)圖象的變化情況打下基礎(chǔ)。

問題8:那反比例函數(shù)的圖象,是否也具有這樣的性質(zhì)呢?

在這一環(huán)節(jié)的教學(xué)設(shè)計是:

(1)回顧反比例函數(shù)和的圖象,通過實際觀察;

(2)根據(jù)解析式對行取值,比較x在取不同值時函數(shù)值的變化情況;

(3)電腦演示及學(xué)生小組討論,請學(xué)生給出結(jié)論。即這個問題必須分成兩種情況討論即當(dāng)k0時,自變量x逐漸增大時,y的值則隨著逐漸減??;當(dāng)k0時,自變量x逐漸增大時,y的值也隨著逐漸增大。

(4)對于學(xué)生做出的結(jié)論,老師應(yīng)該要給予肯定,同時可以提出:有沒有同學(xué)需要補(bǔ)充的呢?若沒有,則可以舉例:當(dāng)k0,分別比較在第三象限x=-2,第一象限x=2時的y的值的大小,則以上性質(zhì)是否依然成立?學(xué)生的回答應(yīng)該是:不成立。這時老師再請學(xué)生做小結(jié):必須限定在每一個象限內(nèi),才有以上性質(zhì)成立。

問題9:當(dāng)函數(shù)圖象的兩個分支無限延伸時,它與x軸、y軸相交嗎?為什么?

在這個環(huán)節(jié)中,可以結(jié)合剛才學(xué)生所畫的錯誤圖象,引導(dǎo)學(xué)生可以通過代數(shù)的方法分析反比例函數(shù)的解析式,由分母不能為零,得x不能為零。由k≠0,得y必不為零,從而驗證了反比例函數(shù)的圖象。當(dāng)兩個分支無限延伸時,可以無限地逼近x軸、y軸,但永遠(yuǎn)不會與兩軸相交。隨即強(qiáng)調(diào)畫圖時要注意準(zhǔn)確性。

(四)備用思考題

1、反比例函數(shù)的圖象在第一、三象限,求a的取值范圍

2、

(1)當(dāng)m為何值時,y是x的正比例函數(shù)

(2)當(dāng)m為何值時,y是x的反比例函數(shù)

(五)小結(jié):

八年級數(shù)學(xué)下冊課件簡短篇5

一、教材分析

(一)教材地位

這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。

(二)教學(xué)目標(biāo)

知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.

過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

情感態(tài)度與價值觀:激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

(三)教學(xué)重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

教學(xué)難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

突出重點、突破難點的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

二、教法與學(xué)法分析:

學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計算方法(包括割補(bǔ)、拼接),但運用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強(qiáng).

教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點,在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

三、教學(xué)過程設(shè)計1.創(chuàng)設(shè)情境,提出問題2.實驗操作,模型構(gòu)建3.回歸生活,應(yīng)用新知

4.知識拓展,鞏固深化5.感悟收獲,布置作業(yè)

(一)創(chuàng)設(shè)情境提出問題

(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹年國際數(shù)學(xué)的一枚紀(jì)念郵票大會會標(biāo)設(shè)計意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價值.

(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進(jìn)入三樓滅火

設(shè)計意圖:以實際問題為切入點引入新課,反映了數(shù)學(xué)來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié).

二、實驗操作模型構(gòu)建

1.等腰直角三角形(數(shù)格子)

2.一般直角三角形(割補(bǔ))

問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

設(shè)計意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想.

問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點,組織學(xué)生合作交流)

設(shè)計意圖:不僅有利于突破難點,而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高.

通過以上實驗歸納總結(jié)勾股定理.

設(shè)計意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時發(fā)揮了學(xué)生的主體作用,體驗了從特殊——一般的認(rèn)知規(guī)律.

三.回歸生活應(yīng)用新知

讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心.

四、知識拓展鞏固深化

基礎(chǔ)題,情境題,探索題.

設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習(xí),照顧學(xué)生的個體差異,關(guān)注學(xué)生的個性發(fā)展.知識的運用得到升華.

基礎(chǔ)題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學(xué)問題?你能解決所提出的問題嗎?

設(shè)計意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?

設(shè)計意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。

設(shè)計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

五、感悟收獲布置作業(yè):這節(jié)課你的收獲是什么

作業(yè):1、課本習(xí)題2.12、搜集有關(guān)勾股定理證明的資料.

板書設(shè)計探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

設(shè)計說明::1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法.

2.讓學(xué)生人人參與,注重對學(xué)生活動的評價,一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達(dá)水平.

八年級數(shù)學(xué)下冊課件簡短篇6

一、教材分析:勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。

教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運用。

據(jù)此,制定教學(xué)目標(biāo)如下:1、理解并掌握勾股定理及其證明。2、能夠靈活地運用勾股定理及其計算。3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

二、教學(xué)重點:勾股定理的證明和應(yīng)用。

三、教學(xué)難點:勾股定理的證明。

四、教法和學(xué)法:教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:

以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。

切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。

通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

五、教學(xué)程序:本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:

(一)創(chuàng)設(shè)情境以古引新

1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

3、板書課題,出示學(xué)習(xí)目標(biāo)。(二)初步感知理解教材

教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。

(三)質(zhì)疑解難討論歸納:1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

(1)這兩個圖形有什么特點?(2)你能寫出這兩個圖形的面積嗎?

(3)如何運用勾股定理?是否還有其他形式?

這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補(bǔ)充。教師及時進(jìn)行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習(xí)強(qiáng)化提高

1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。

2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。

(五)歸納總結(jié)練習(xí)反饋

引導(dǎo)學(xué)生對知識要點進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。

本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。

八年級數(shù)學(xué)下冊課件簡短篇7

一、說教材:這節(jié)課主要是通過測量操作活動認(rèn)識平行四邊形,了解平行四邊形對邊平行且相等,對角相等,并掌握平行四邊形底和高的概念,初步會畫出平行四邊形底上的高。

說教法:新教材的引入方法與以往的不同,是采用兩條等寬色帶進(jìn)行交疊后產(chǎn)生的四邊形來引入平行四邊形的。首先突出的是平行四邊形“面”的形象,然后再到“邊”(面的邊緣)。教學(xué)分兩兩個環(huán)節(jié)。第一步是認(rèn)識平行四邊形。讓學(xué)生觀察兩條互相平行的透明色帶交疊出的四邊形,進(jìn)而觀察這些四邊形的特點。學(xué)生通過操作、比較、思考后發(fā)現(xiàn):這些四邊形的兩組對邊分別平行,然后引導(dǎo)學(xué)生小結(jié)平行四邊形的定義,并給出數(shù)學(xué)記號。讓學(xué)生找生活中的平行四邊形的例子,一方面可以豐富對平行四邊形的表象,另一方面加深學(xué)生“對兩組對邊分別平行”的認(rèn)識。

第二步是認(rèn)識平行四邊形的底和高。平行四邊形的底和高是相對的,而非絕對的。平行四邊形的任何一條邊都可以為底邊,那么從底邊的對邊上的一點出發(fā)做底邊的垂線,該點與垂足之間的線段就是該底邊上的高。然而“高”的概念對學(xué)生來說不容易建立,以為學(xué)生在生活經(jīng)驗中的高,往往是身高、樹高、塔高等,指的是直立于地面上的對象的高度,隱含著垂直的定義。因此教材中,我從垂線這一概念引入,再通過垂線段建立起高的概念,同時進(jìn)行操作觀察,這些高的位置與關(guān)系。從中得出:同一底邊上可以畫出無數(shù)條高,這些高的長度都相等,但在一般情況下,我們只要作一條高就可以了。并在此基礎(chǔ)上進(jìn)行拓展,如形外高的操作,或者底不是水平方向的怎樣操作高等,從而拓寬了學(xué)生對平面圖形中“高”的認(rèn)識。

19.1平行四邊形

[知識與能力目標(biāo)]:1、通過操作活動認(rèn)識平行四邊形。2、掌握平行四邊形底和高的概念,并初步會畫出平行四邊形底上對應(yīng)的高。

[過程與方法]

[情感目標(biāo)]:讓學(xué)生享受學(xué)習(xí)的快樂,分享成功的喜悅。

一、說課內(nèi)容:蘇教版數(shù)學(xué)四年級下冊第43~45頁。

二、教學(xué)內(nèi)容的地位、作用和意義:

這部分內(nèi)容是在學(xué)生已經(jīng)初步掌握了長方形、正方形、三角形的特征,以及初步認(rèn)識平行和相交的基礎(chǔ)上,進(jìn)一步認(rèn)識平行四邊形,并掌握其特征。通過這節(jié)課深入的學(xué)習(xí),使學(xué)生為今后進(jìn)一步學(xué)行四邊行面積計算打下基礎(chǔ)。教材中第一個例題,首先聯(lián)系生活實際,讓學(xué)生找出一些常見物體上的平行四邊形,再要求學(xué)生根據(jù)個人的生活經(jīng)驗舉例,充分感知平行四邊形;接著讓學(xué)生做出一個平行四邊形并相互交流,初步感受平行四邊形的基本特征。在此基礎(chǔ)上,抽象出平行四邊形的圖形讓學(xué)生認(rèn)識,引導(dǎo)學(xué)生探索發(fā)現(xiàn)平行四邊形的基本特征。第二個例題認(rèn)識平行四邊形的底和高,并揭示高和底的意義?!霸囈辉嚒弊寣W(xué)生動手測量幾個平行四邊形指定底邊上的高及相應(yīng)的底,進(jìn)一步感受高與底的意義。

三、說目標(biāo)

1、知識與技能目標(biāo)

(1)理解平行四邊形的概念及其特征。

(2)認(rèn)識平行四邊形的底和高,會畫高。

(3)培養(yǎng)學(xué)生實踐能力,觀察能力、分析能力。

2、過程與方法目標(biāo)

讓學(xué)生通過動手操作,動眼觀察,動口表達(dá),動腦思考等方式使學(xué)生在活動中進(jìn)一步積累認(rèn)識圖形的學(xué)習(xí)經(jīng)驗,學(xué)會用不同方法做出一個平行四邊形,會在方格紙上畫平行四邊形,能正確判斷一個平面圖形是不是平行四邊形,能測量或畫出平行四邊形的高。

3、情感態(tài)度與價值觀目標(biāo)

讓學(xué)生感受圖形與生活的密切聯(lián)系,感受平面圖形的學(xué)習(xí)價值,進(jìn)一步發(fā)展對“空間與圖形”的學(xué)習(xí)興趣,在探索中感受成功的樂趣。

四、教學(xué)重點、難點:

教學(xué)重點:是認(rèn)識平行四邊形;利用材料做平行四邊形并發(fā)現(xiàn)其特征;能測量或畫出平行四邊形的高。

教學(xué)難點:是學(xué)生在做平行四邊形的過程中體會其特征。

五、說教具和學(xué)具準(zhǔn)備

教具:三角板、平行四邊形紙片、長方形活動框、小黑板等。

學(xué)具:三角板、平行四邊形紙片、量角器。

【說學(xué)情】

四年級學(xué)生思維活躍,求知欲強(qiáng),喜歡動手、動腦。有很強(qiáng)的好奇心和探索欲望。因此在教學(xué)中我抓住這些特點讓他們通過動眼觀察、動手操作、動腦分析歸納等來理解所學(xué)知識。

【說教法和學(xué)法】

這節(jié)課教師要注重以教師的導(dǎo)和學(xué)生的學(xué)為主線,通過教師提問、演示、指導(dǎo)。學(xué)生動手操作、觀察、分析、討論、歸納等方法來完成教學(xué),使學(xué)生在輕松愉快中獲得新知。我們認(rèn)為在本課教學(xué)中應(yīng)體現(xiàn)以下幾點

一、聯(lián)系生活實際進(jìn)行教學(xué)

“數(shù)學(xué)的生活化,讓學(xué)生學(xué)習(xí)現(xiàn)實的數(shù)學(xué)”是新課程理念之一。教學(xué)時應(yīng)先讓學(xué)生從生活場景圖中找平行四邊形,再尋找生活中的平行四邊形。最后舉例說明平行四邊形容易變形的特性在生活中的應(yīng)用。使學(xué)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論