版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆四川省什邡市城南學(xué)校數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.若反比例函數(shù)y=的圖象經(jīng)過點(2,3),則它的圖象也一定經(jīng)過的點是()A. B. C. D.2.如圖,隨意向水平放置的大⊙O內(nèi)部區(qū)域拋一個小球,則小球落在小⊙O內(nèi)部(陰影)區(qū)域的概率為()A. B. C. D.3.如圖,正五邊形ABCDE內(nèi)接于⊙O,則∠ABD的度數(shù)為()A.60° B.72° C.78° D.144°4.一個幾何體是由若干個相同的正方體組成的,其主視圖和左視圖如圖所示,則這個幾何體最多可由多少個這樣的正方體組成()A. B. C. D.5.將一個正方體沿正面相鄰兩條棱的中點連線截去一個三棱柱,得到一個如圖所示的幾何體,則該幾何體的左視圖是()A. B. C. D.6.如圖,在中,,于點D,,,則AD的長是()A.1. B. C.2 D.47.如圖,已知△ABC和△EDC是以點C為位似中心的位似圖形,且△ABC和△EDC的周長之比為1:2,點C的坐標(biāo)為(﹣2,0),若點B的坐標(biāo)為(﹣5,1),則點D的坐標(biāo)為()A.(4,﹣2) B.(6,﹣2) C.(8,﹣2) D.(10,﹣2)8.如圖,等邊△ABC中,點D、E、F分別是AB、AC、BC中點,點M在CB的延長線上,△DMN為等邊三角形,且EN經(jīng)過F點.下列結(jié)論:①EN=MF②MB=FN③MP·DP=NP·FP④MB·BP=PF·FC,正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個9.如圖圖形中,是中心對稱圖形的是()A. B. C. D.10.從拼音“nanhai”中隨機抽取一個字母,抽中a的概率為()A. B. C. D.二、填空題(每小題3分,共24分)11.在正方形ABCD中,對角線AC、BD相交于點O.如果AC=3,那么正方形ABCD的面積是__________.12.計算sin45°的值等于__________13.如圖,身高為1.8米的某學(xué)生想測量學(xué)校旗桿的高度,當(dāng)他站在B處時,他頭頂端的影子正好與旗桿頂端的影子重合,并測得AB=2米,BC=18米,則旗桿CD的高度是______米.14.如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為1:的坡面AD走了200米到D處,此時在D處測得山頂B的仰角為60°,則山高BC=_____米(結(jié)果保留根號).15.如圖,將Rt△ABC繞點A逆時針旋轉(zhuǎn)40°,得到Rt△AB′C′,使AB′恰好經(jīng)過點C,連接BB′,則∠BAC′的度數(shù)為_____°.16.拋物線y=﹣x2向上平移1個單位長度得到拋物線的解析式為_____.17.中,若,,,則的面積為________.18.一艘觀光游船從港口以北偏東的方向出港觀光,航行海里至處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東方向,馬上以海里每小時的速度前往救援,海警船到達(dá)事故船處所需的時間大約為________小時(用根號表示).三、解答題(共66分)19.(10分)定義:如圖1,在中,把繞點逆時針旋轉(zhuǎn)()并延長一倍得到,把繞點順時針旋轉(zhuǎn)并延長一倍得到,連接.當(dāng)時,稱是的“倍旋三角形”,邊上的中線叫做的“倍旋中線”.特例感知:(1)如圖1,當(dāng),時,則“倍旋中線”長為______;如圖2,當(dāng)為等邊三角形時,“倍旋中線”與的數(shù)量關(guān)系為______;猜想論證:(2)在圖3中,當(dāng)為任意三角形時,猜想“倍旋中線”與的數(shù)量關(guān)系,并給予證明.20.(6分)用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋海?1.(6分)知識改變世界,科技改變生活。導(dǎo)航設(shè)備的不斷更新方便了人們的出行。如圖,某校組織學(xué)生乘車到蒲江茶葉基地C地進(jìn)行研學(xué)活動,車到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正東方向,且距A地9.1千米,導(dǎo)航顯示車輛應(yīng)沿南偏東60°方向行駛至B地,再沿北偏東53°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離(精確到個位)(參考數(shù)據(jù))22.(8分)如圖,是⊙的弦,交于點,過點的直線交的延長線于點,且是⊙的切線.(1)判斷的形狀,并說明理由;(2)若,求的長;(3)設(shè)的面積是的面積是,且.若⊙的半徑為,求.23.(8分)《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步面見木?”用今天的話說,大意是:如圖,DEFG是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門H位于GD的中點,南門K位于ED的中點,出東門15步的A處有一樹木,求出南門多少步恰好看到位于A處的樹木(即點D在直線AC上)?請你計算KC的長為多少步.24.(8分)某校根據(jù)課程設(shè)置要求,開設(shè)了數(shù)學(xué)類拓展性課程,為了解學(xué)生最喜歡的課程內(nèi)容,隨機抽取了部分學(xué)生進(jìn)行問卷調(diào)查(每人必須且只選中其中一項),并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖(不完整),請根據(jù)圖中信息回答問題:(1)求m,n的值.(2)補全條形統(tǒng)計圖.(3)該校共有1200名學(xué)生,試估計全校最喜歡“數(shù)學(xué)史話”的學(xué)生人數(shù).25.(10分)如圖,已知拋物線C1交直線y=3于點A(﹣4,3),B(﹣1,3),交y軸于點C(0,6).(1)求C1的解析式.(2)求拋物線C1關(guān)于直線y=3的對稱拋物線的解析式;設(shè)C2交x軸于點D和點E(點D在點E的左邊),求點D和點E的坐標(biāo).(3)將拋物線C1水平向右平移得到拋物線C3,記平移后點B的對應(yīng)點B′,若DB平分∠BDE,求拋物線C3的解析式.(4)直接寫出拋物線C1關(guān)于直線y=n(n為常數(shù))對稱的拋物線的解析式.26.(10分)如圖,在Rt△ABC中,∠C=90°,BC=8,tanB=,點D在BC上,且BD=AD.求AC的長和cos∠ADC的值.
參考答案一、選擇題(每小題3分,共30分)1、A【題目詳解】解:根據(jù)題意得k=2×3=6,所以反比例函數(shù)解析式為y=,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴點(﹣3,﹣2)在反比例函數(shù)y=的圖象上.故選A.【題目點撥】本題考查反比例函數(shù)圖象上點的坐標(biāo)特征.2、B【分析】針扎到內(nèi)切圓區(qū)域的概率就是內(nèi)切圓的面積與外切圓面積的比.【題目詳解】解:∵如圖所示的正三角形,∴∠CAB=60°,∴∠OAB=30°,∠OBA=90°,設(shè)OB=a,則OA=2a,則小球落在小⊙O內(nèi)部(陰影)區(qū)域的概率為.故選:B.【題目點撥】本題考查了概率問題,掌握圓的面積公式是解題的關(guān)鍵.3、B【分析】如圖(見解析),先根據(jù)正五邊形的性質(zhì)得圓心角的度數(shù),再根據(jù)圓周角定理即可得.【題目詳解】如圖,連接OA、OE、OD由正五邊形的性質(zhì)得:由圓周角定理得:(一條弧所對圓周角等于其所對圓心角的一半)故選:B.【題目點撥】本題考查了正五邊形的性質(zhì)、圓周角定理,熟記性質(zhì)和定理是解題關(guān)鍵.4、B【分析】易得此幾何體有三行,三列,判斷出各行各列最多有幾個正方體組成即可.【題目詳解】解:綜合主視圖與左視圖分析可知,第一行第1列最多有2個,第一行第2列最多有1個,第一行第3列最多有2個;第二行第1列最多有1個,第二行第2列最多有1個,第二行第3列最多有1個;第三行第1列最多有2個,第三行第2列最多有1個,第三行第3列最多有2個;所以最多有:2+1+2+1+1+1+2+1+2=13(個),故選B.【題目點撥】本題考查了幾何體三視圖,重點是考查學(xué)生的空間想象能力.掌握以下知識點:主視圖反映長和高,左視圖反映寬和高,俯視圖反映長和寬.5、B【分析】根據(jù)左視圖的定義畫出左視圖即可得答案.【題目詳解】從左面看,是正方形,對面中間有一條看不見的棱,用虛線表示,∴B選項符合題意,故選B.【題目點撥】此題主要考查了簡單幾何體的三視圖,左視圖是從左面看所得到的圖形.6、D【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB,根據(jù)同角的余角相等,可得∠ACD=∠B,又由∠CDB=∠ACB=90°,可證得△ACD∽△CBD,然后利用相似三角形的對應(yīng)邊成比例,即可求得答案.【題目詳解】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴,∵CD=2,BD=1,∴,∴AD=4.故選D.【題目點撥】此題考查相似三角形的判定與性質(zhì),解題關(guān)鍵在于證得△ACD∽△CBD.7、A【分析】作BG⊥x軸于點G,DH⊥x軸于點H,根據(jù)位似圖形的概念得到△ABC∽△EDC,根據(jù)相似是三角形的性質(zhì)計算即可.【題目詳解】作BG⊥x軸于點G,DH⊥x軸于點H,則BG∥DH,∵△ABC和△EDC是以點C為位似中心的位似圖形,∴△ABC∽△EDC,∵△ABC和△EDC的周長之比為1:2,∴=,由題意得,CG=3,BG=1,∵BG∥DH,∴△BCG∽△DCH,∴===,即==,解得,CH=6,DH=2,∴OH=CH﹣OC=4,則點D的坐標(biāo)為為(4,﹣2),故選:A.【題目點撥】本題考查的是位似變換的性質(zhì),正確理解位似與相似的關(guān)系,記憶關(guān)于原點位似的兩個圖形對應(yīng)點坐標(biāo)之間的關(guān)系是解題的關(guān)鍵.8、C【分析】①連接DE、DF,根據(jù)等邊三角形的性質(zhì)得到∠MDF=∠NDE,證明△DMF≌△DNE,根據(jù)全等三角形的性質(zhì)證明;②根據(jù)①的結(jié)論結(jié)合點D、E、F分別是AB、AC、BC中點,即可得證;③根據(jù)題目中的條件易證得,即可得證;④根據(jù)題目中的條件易證得,再則等量代換,即可得證.【題目詳解】連接,
∵和為等邊三角形,
∴,,
∵點分別為邊的中點,
∴是等邊三角形,∴,,
∵∴,
在和中,,
∴,
∴,故①正確;∵點分別為等邊三角形三邊的中點,
∴四邊形為菱形,∴,∵,∴,故②正確;∵點分別為等邊三角形三邊的中點,∴∥,∴,∵為等邊三角形,∴,又∵,∴,∴,∴,故③錯誤;∵點分別為等邊三角形三邊的中點,∴∥,,∴,∴,由②得,∴,∴,故④正確;綜上:①②④共3個正確.故選:C【題目點撥】本題考查的是等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理結(jié)合等量代換是解題的關(guān)鍵.9、D【分析】根據(jù)中心對稱圖形的概念和識別.【題目詳解】根據(jù)中心對稱圖形的概念和識別,可知D是中心對稱圖形,A、C是軸對稱圖形,D既不是中心對稱圖形,也不是軸對稱圖形.故選D.【題目點撥】本題考查中心對稱圖形,掌握中心對稱圖形的概念,會判斷一個圖形是否是中心對稱圖形.10、B【解題分析】nanhai共有6個拼音字母,a有2個,根據(jù)概率公式可得答案.【題目詳解】∵nanhai共有6個拼音字母,a有2個,∴抽中a的概率為,故選:B.【題目點撥】此題考查了概率公式的應(yīng)用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.二、填空題(每小題3分,共24分)11、1【分析】由正方形的面積公式可求解.【題目詳解】解:∵AC=3,
∴正方形ABCD的面積=3×3×=1,
故答案為:1.【題目點撥】本題考查了正方形的性質(zhì),熟練運用正方形的性質(zhì)是解題的關(guān)鍵.12、【分析】根據(jù)特殊銳角的三角函數(shù)值求解.【題目詳解】解:,故答案為:.【題目點撥】本題主要考查特殊銳角的三角函數(shù)值,解題的關(guān)鍵是熟記特殊銳角的三角函數(shù)值.13、1.【題目詳解】解:∵BE⊥AC,CD⊥AC,∴△ABE∽△ACD,解得:故答案為1.點睛:同一時刻,物體的高度與影長的比相等.14、300+100【分析】作DF⊥AC于F.解直角三角形分別求出BE、EC即可解決問題.【題目詳解】作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100(米),∵∠DEC=∠BCA=∠DFC=90°,∴四邊形DECF是矩形,∴EC=DF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠DAC=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200(米),在Rt△BDE中,sin∠BDE=,∴BE=BD?sin∠BDE=200×=300(米),∴BC=BE+EC=300+100(米);故答案為:300+100.【題目點撥】本題考查解直角三角形的應(yīng)用仰角俯角問題,坡度坡角問題等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題15、1【分析】由圖形選擇的性質(zhì),∠BAC=∠B′AC′則問題可解.【題目詳解】解:∵Rt△ABC繞點A逆時針旋轉(zhuǎn)40°,得到Rt△AB′C′,使AB′恰好經(jīng)過點C,∴∠BAC=∠B′AC′=40°,∴∠BAC′=∠BAC+∠B′AC′=1°,故答案為:1.【題目點撥】本題考查了圖形旋轉(zhuǎn)的性質(zhì),解答關(guān)鍵是應(yīng)用旋轉(zhuǎn)過程中旋轉(zhuǎn)角不變的性質(zhì).16、y=﹣+1【分析】直接根據(jù)平移規(guī)律作答即可.【題目詳解】解:拋物線y=﹣x2向上平移1個單位長度得到拋物線的解析式為y=﹣x2+1,故答案為:y=﹣x2+1.【題目點撥】本題考查了函數(shù)圖像的平移.要求熟練掌握平移的規(guī)律:左加右減,上加下減,并用規(guī)律求解析式.17、【分析】過點A作BC邊上的高交BC的延長線于點D,在中,利用三角函數(shù)求出AD長,再根據(jù)三角形面積公式求解即可.【題目詳解】解:如圖,作于點D,則,在中,所以的面積為故答案為:.【題目點撥】本題主要考查了三角函數(shù),靈活添加輔助線利用三角函數(shù)求出三角形的高是解題的關(guān)鍵.18、【分析】過點C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=(海里),然后根據(jù)時間=路程÷速度即可求出海警船到大事故船C處所需的時間.【題目詳解】解:如圖,過點C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=60海里,∴CD=AC=30海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°-37°=53°,∴BC=(海里),∴海警船到大事故船C處所需的時間大約為:20÷40=(小時).故答案為.【題目點撥】本題考查了解直角三角形的應(yīng)用-方向角問題,難度適中,作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.三、解答題(共66分)19、(1)①4,②;(2),證明見解析.【分析】(1)如圖1,首先證明,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可解決問題;如圖2,過點A作,易證,根據(jù)易得結(jié)論.(2)延長到,使得,連接,易證四邊形是平行四邊形,再證明得,故可得結(jié)論.【題目詳解】(1)如圖1,∵,∴∵,∴∴∵BC=4,∴,∵D是的中點,∴AD=;如圖2,∵,,∴根據(jù)“倍旋中線”知等腰三角形,過A作,垂足為∴,,∵D是等邊三角形的邊的中點,且∴∴∴(2)結(jié)論:理由:如圖,延長到,使得,連接,∵,∴四邊形是平行四邊形∴,∵∴∵∴∴∴【題目點撥】本題屬于幾何變換綜合題,主要考查相似三角形的判定和性質(zhì)、直角三角形的性質(zhì)、等邊三角形的判定和性質(zhì)等知識的綜合運用,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題.20、【分析】將方程整理成一般式,再根據(jù)公式法求解可得.【題目詳解】方程可變形為:,∵,∴∴.【題目點撥】本題主要考查解一元二次方程的能力和相反數(shù)的性質(zhì),熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點選擇合適、簡便的方法是解題的關(guān)鍵.21、5千米【分析】作BD⊥AC,設(shè)AD=x,在Rt△ABD中求得BD,在Rt△BCD中求得CD,由AC=AD+CD建立關(guān)于x的方程,解之求得x的值,根據(jù)三角函數(shù)的定義即可得到結(jié)論.【題目詳解】解:如圖,作BD⊥AC于點D,則∠DAB=30°、∠DBC=53°,
設(shè)BD=x,
在Rt△ABD中,AD==
在Rt△BCD中,CD=BDtan∠DBC=x·tan53°=x由AC=AD+CD可得+x=9.1解得:x=則在Rt△BCD中,BC==即BC兩地的距離約為5千米.【題目點撥】此題考查了方向角問題.解此題的關(guān)鍵是將方向角問題轉(zhuǎn)化為解直角三角形的知識,利用三角函數(shù)的知識求解.22、(1)是等腰三角形,理由見解析;(2)的長為;(3).【解題分析】(1)首先連接OB,根據(jù)等腰三角形的性質(zhì)由OA=OB得,由點C在過點B的切線上,且,根據(jù)等角的余角相等,易證得∠PBC=∠CPB,即可證得△CBP是等腰三角形;(2)設(shè)BC=x,則PC=x,在Rt△OBC中,根據(jù)勾股定理得到,然后解方程即可;(3)作CD⊥BP于D,由等腰三角形三線合一的性質(zhì)得,由,通過證得,得出即可求得CD,然后解直角三角形即可求得.【題目詳解】(1)是等腰三角形,理由:連接,⊙與相切與點,,即,,是等腰三角形(2)設(shè),則,在中,,,,,解得,即的長為;(3)解:作于,,,,,,,,,.【題目點撥】本題考查了切線的性質(zhì)、勾股定理、等腰三角形的判定與性質(zhì)以及三角形相似的判定和性質(zhì).此題難度適中,注意掌握輔助線的作法及數(shù)形結(jié)合思想的應(yīng)用.23、【分析】根據(jù)平行證出△CDK∽△DAH,利用相似比即可得出答案.【題目詳解】解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴,即,∴CK=答:KC的長為步.【題目點撥】本題主要考查的是相似三角形的應(yīng)用,難度適中,解題關(guān)鍵是找出相似三角形.24、(1),;(2)見解析;(3)300人.【分析】(1)用選A的人數(shù)除以其所占的百分比即可求得被調(diào)查的總?cè)藬?shù),然后根據(jù)百分比=其所對應(yīng)的人數(shù)÷總?cè)藬?shù)分別求出m、n的值j即可;(2)用總數(shù)減去其他各小組的人數(shù)即可求得選D的人數(shù),從而補全條形統(tǒng)計圖;(3)用樣本估計總體即可確定全校最喜歡“數(shù)學(xué)史話”的學(xué)生人數(shù).【題目詳解】(1)抽取的學(xué)生人數(shù)為人,所以.(2)最喜歡“生活應(yīng)用”的學(xué)生數(shù)為(人).條形統(tǒng)計圖補全如下:(3)該要校共有1200名學(xué)生,可估計全校最喜歡“數(shù)學(xué)史話”的學(xué)生有;人.【題目點撥】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖的應(yīng)用,從條形統(tǒng)計圖、扇形統(tǒng)計圖中獲取必要的信息是解決問題的關(guān)鍵.25、(1)C1的解析式為y=x2+x+1;(2)拋物線C2的解析式為y=﹣x2﹣x,D(﹣5,0),E(0,0);(3)拋物線C3的解析式為y=;(4)y=x2x+2n﹣1.【分析】(1)設(shè)拋物線C1經(jīng)的解析式為y=ax2+bx+c,將點A、B、C的坐標(biāo)代入求解即可得到解析式;(2)先求出點C關(guān)于直線y=3的對稱點的坐標(biāo)為(0,0),設(shè)拋物線C2的解析式為y=a1x2+b1x+c1,即可求出答案;(3)如圖,根據(jù)平行線的性質(zhì)及
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度民辦學(xué)校校車服務(wù)合同2篇
- 2025版新能源汽車銷售與服務(wù)合同模板下載4篇
- 2025年度農(nóng)業(yè)科技項目知識產(chǎn)權(quán)保護(hù)合同8篇
- 2025版綠色建筑節(jié)能技術(shù)實施合同4篇
- 2025年度高端培訓(xùn)學(xué)校副校長職務(wù)聘任合同4篇
- 二零二五年度農(nóng)家樂土地流轉(zhuǎn)與鄉(xiāng)村旅游發(fā)展合同
- 二零二五年度農(nóng)家樂房屋出租與鄉(xiāng)村旅游開發(fā)合同
- 2025年度汽車租賃合同車輛違章處理范本3篇
- 案外人另案確權(quán)訴訟與執(zhí)行異議之訴的關(guān)系處理
- 二零二五年度民間借款擔(dān)保與資產(chǎn)保全服務(wù)合同樣本3篇
- 2024年山東省泰安市高考物理一模試卷(含詳細(xì)答案解析)
- 2022版《義務(wù)教育英語課程標(biāo)準(zhǔn)》解讀培訓(xùn)課件
- 科技進(jìn)步類現(xiàn)代軌道交通綜合體設(shè)計理論與關(guān)鍵技術(shù)公
- 五個帶頭方面談心談話范文三篇
- 互聯(lián)網(wǎng)的發(fā)展歷程
- 部編人教版五年級道德與法治下冊全冊課件(完整版)
- 廣西貴港市2023年中考物理試題(原卷版)
- 外觀質(zhì)量評定報告
- 窒息的急救解讀課件
- 下腔靜脈濾器置入術(shù)共27張課件
- 人教小學(xué)四年級上冊數(shù)學(xué)知識點歸納
評論
0/150
提交評論