2024屆山東省青島市即墨區(qū)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁
2024屆山東省青島市即墨區(qū)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁
2024屆山東省青島市即墨區(qū)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁
2024屆山東省青島市即墨區(qū)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁
2024屆山東省青島市即墨區(qū)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山東省青島市即墨區(qū)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.已知圓錐的底面半徑為3cm,母線為5cm,則圓錐的側(cè)面積是()A.30πcm2 B.15πcm2 C.cm2 D.10πcm22.方程的解是()A. B., C., D.3.隨機擲一枚質(zhì)地均勻的正方體骰子,骰子的六個面上分別刻有1到6的點數(shù),擲兩次骰子,擲得面朝上的點數(shù)之和是5的概率是()A. B. C. D.4.若,相似比為2,且的面積為12,則的面積為()A.3 B.6 C.24 D.485.如圖,在ABC中,點D為BC邊上的一點,且AD=AB=5,AD⊥AB于點A,過點D作DE⊥AD,DE交AC于點E,若DE=2,則ADC的面積為()A. B.4 C. D.6.將拋物線向左平移3個單位長度,再向上平移5個單位長度,得到的拋物線的表達式為()A. B.C. D.7.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質(zhì)地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球8.下列說法正確的是()A.隨機拋擲一枚均勻的硬幣,落地后反面一定朝上。B.從1,2,3,4,5中隨機取一個數(shù),取得奇數(shù)的可能性較大。C.某彩票中獎率為,說明買100張彩票,有36張中獎。D.打開電視,中央一套正在播放新聞聯(lián)播。9.方程x2﹣2x﹣4=0的根的情況()A.只有一個實數(shù)根 B.有兩個不相等的實數(shù)根C.有兩個相等的實數(shù)根 D.沒有實數(shù)根10.如圖,△ABC與△A′B′C′是位似圖形,PB′=BB′,A′B′=2,則AB的長為()A.1 B.2 C.4 D.811.如圖,一同學(xué)在湖邊看到一棵樹,他目測出自己與樹的距離為20m,樹的頂端在水中的倒影距自己5m遠,該同學(xué)的身高為1.7m,則樹高為().A.3.4m B.4.7m C.5.1m D.6.8m12.如圖,點A、B、C是⊙O上的三點,∠BAC=40°,則∠OBC的度數(shù)是()A.80° B.40° C.50° D.20°二、填空題(每題4分,共24分)13.已知點,都在反比例函數(shù)圖象上,則____(填“”或“”或“”).14.在一個不透明的袋中有2個紅球,若干個白球,它們除顏色外其它都相同,若隨機從袋中摸出一個球,摸到紅球的概率是,則袋中有白球_________個.15.一個幾何體的三視圖如圖所示,根據(jù)圖中數(shù)據(jù),計算出該幾何體的表面積是__________.16.如圖,在矩形中,,以點為圓心,以的長為半徑畫弧交于,點恰好是中點,則圖中陰影部分的面積為___________.(結(jié)果保留)17.如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(2,﹣4),B(m,2)兩點.當(dāng)x滿足條件______________時,一次函數(shù)的值大于反比例函數(shù)值.18.如圖,已知⊙O的半徑是2,點A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為_____.三、解答題(共78分)19.(8分)一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,其盤面分為等份,分別標(biāo)上數(shù)字.小穎準(zhǔn)備轉(zhuǎn)動轉(zhuǎn)盤次,現(xiàn)已轉(zhuǎn)動次,每一次停止后,小穎將指針?biāo)笖?shù)字記錄如下:次數(shù)數(shù)字小穎繼續(xù)自由轉(zhuǎn)動轉(zhuǎn)盤次,判斷是否可能發(fā)生“這次指針?biāo)笖?shù)字的平均數(shù)不小于且不大于”的結(jié)果?若有可能,計算發(fā)生此結(jié)果的概率,并寫出計算過程;若不可能,請說明理由.(指針指向盤面等分線時為無效轉(zhuǎn)次.)20.(8分)已知二次函數(shù).(1)在平面直角坐標(biāo)系中畫出該函數(shù)的圖象;(2)當(dāng)0≤x≤3時,結(jié)合函數(shù)圖象,直接寫出的取值范圍.21.(8分)綜合與探究如圖,拋物線經(jīng)過點、、,已知點,,且,點為拋物線上一點(異于).(1)求拋物線和直線的表達式.(2)若點是直線上方拋物線上的點,過點作,與交于點,垂足為.當(dāng)時,求點的坐標(biāo).(3)若點為軸上一動點,是否存在點,使得由,,,四點組成的四邊形為平行四邊形?若存在,直接寫出點的坐標(biāo);若不存在,請說明理由.22.(10分)如圖,在矩形ABCD中,點E是AD上的一個動點,連接BE,作點A關(guān)于BE的對稱點F,且點F落在矩形ABCD的內(nèi)部,連接AF,BF,EF,過點F作GF⊥AF交AD于點G,設(shè).(1)求證:AE=GE;(2)當(dāng)點F落在AC上時,用含n的代數(shù)式表示的值;(3)若AD=4AB,且以點F,C,G為頂點的三角形是直角三角形,求n的值.23.(10分)如圖所示,AD,BE是鈍角△ABC的邊BC,AC上的高,求證:.24.(10分)在平面直角坐標(biāo)系中,已知,.(1)如圖1,求的值.(2)把繞著點順時針旋轉(zhuǎn),點、旋轉(zhuǎn)后對應(yīng)的點分別為、.①當(dāng)恰好落在的延長線上時,如圖2,求出點、的坐標(biāo).②若點是的中點,點是線段上的動點,如圖3,在旋轉(zhuǎn)過程中,請直接寫出線段長的取值范圍.25.(12分)如圖,已知二次函數(shù)的頂點為(2,),且圖象經(jīng)過A(0,3),圖象與x軸交于B、C兩點.(1)求該函數(shù)的解析式;(2)連結(jié)AB、AC,求△ABC面積.26.如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側(cè)),作BC⊥y軸,垂足為點C,連結(jié)AB,AC.(1)求該反比例函數(shù)的解析式;(2)若△ABC的面積為6,求直線AB的表達式.

參考答案一、選擇題(每題4分,共48分)1、B【解題分析】試題解析:∵底面半徑為3cm,∴底面周長6πcm∴圓錐的側(cè)面積是×6π×5=15π(cm2),故選B.2、B【分析】用因式分解法求解即可得到結(jié)論.【題目詳解】∵x2﹣3x=0,∴x(x﹣3)=0,則x=0或x﹣3=0,解得:,.故選:B.【題目點撥】本題考查了解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點選擇合適、簡便的方法是解答本題的關(guān)鍵.3、B【分析】首先根據(jù)題意列出表格,然后由表格求得所有等可能的結(jié)果與擲得面朝上的點數(shù)之和是5的情況,再利用概率公式求解即可求得答案.【題目詳解】解:列表得:

123456123456723456783456789456789105678910116789101112∵共有36種等可能的結(jié)果,擲得面朝上的點數(shù)之和是5的有4種情況,

∴擲得面朝上的點數(shù)之和是5的概率是:.

故選:B.【題目點撥】此題考查的是用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.4、A【解題分析】試題分析:∵△ABC∽△DEF,相似比為2,∴△ABC與△DEF的面積比為4,∵△ABC的面積為12,∴△DEF的面積為:12×=1.故選A.考點:相似三角形的性質(zhì).5、D【分析】根據(jù)題意得出AB∥DE,得△CED∽△CAB,利用對應(yīng)邊成比例求CD長度,再根據(jù)等腰直角三角形求出底邊上的高,利用面積公式計算即可.【題目詳解】解:如圖,過A作AF⊥BC,垂足為F,∵AD⊥AB,∴∠BAD=90°在Rt△ABD中,由勾股定理得,BD=,∵AF⊥BD,∴AF=.∵AD⊥AB,DE⊥AD,∴∠BAD=∠ADE=90°,∴AB∥DE,∴∠CDE=∠B,∠CED=∠CAB,∴△CDE∽△CBA,∴,∴,∴CD=,∴S△ADC=.故選:D【題目點撥】本題考查相似三角形的性質(zhì)與判定及等腰直角三角形的性質(zhì),利用相似三角形的對應(yīng)邊成比例求線段長是解答此題的關(guān)鍵.6、A【分析】易得新拋物線的頂點,根據(jù)頂點式及平移前后二次項的系數(shù)不變可得新拋物線的解析式.【題目詳解】原拋物線的頂點為(0,0),向左平移3個單位,再向上平移1個單位,那么新拋物線的頂點為(?3,1);可設(shè)新拋物線的解析式為y=?4(x?h)2+k,代入得:y=?4(x+3)2+1.故選:A.【題目點撥】本題主要考查的是函數(shù)圖象的平移,根據(jù)平移規(guī)律“左加右減,上加下減”利用頂點的變化確定圖形的變化是解題的關(guān)鍵.7、A【分析】根據(jù)必然事件的概念:在一定條件下,必然發(fā)生的事件叫做必然事件分析判斷即可.【題目詳解】A、是必然事件;B、是隨機事件,選項錯誤;C、是隨機事件,選項錯誤;D、是隨機事件,選項錯誤.故選A.8、B【解題分析】A、擲一枚硬幣的試驗中,著地時反面向上的概率為,則正面向上的概率也為,不一定就反面朝上,故此選項錯誤;B、從1,2,3,4,5中隨機取一個數(shù),因為奇數(shù)多,所以取得奇數(shù)的可能性較大,故此選項正確;C、某彩票中獎率為36%,說明買100張彩票,有36張中獎,不一定,概率是針對數(shù)據(jù)非常多時,趨近的一個數(shù)并不能說買100張該種彩票就一定能中36張獎,故此選項錯誤;D、中央一套電視節(jié)目有很多,打開電視有可能正在播放中央新聞也有可能播放其它節(jié)目,故本選項錯誤.故選B.9、B【題目詳解】Δ=b2-4ac=(-2)2-4×1×(-4)=20>0,所以方程有兩個不相等的實數(shù)根.故選B.【題目點撥】一元二次方程根的情況:(1)b2-4ac>0,方程有兩個不相等的實數(shù)根;(2)b2-4ac=0,方程有兩個相等的實數(shù)根;(3)b2-4ac<0,方程沒有實數(shù)根.注:若方程有實數(shù)根,那么b2-4ac≥0.10、C【分析】根據(jù)位似圖形的對應(yīng)邊互相平行列式計算,得到答案.【題目詳解】∵△ABC與△A′B′C′是位似圖形,∴A′B′∥AB,∴△PA′B′∽△PAB,∴==,∴AB=4,故選:C.【題目點撥】本題考查的是位似變換的概念、相似三角形的性質(zhì),掌握如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形是解題的關(guān)鍵.11、C【分析】由入射光線和反射光線與鏡面的夾角相等,可得兩個相似三角形,根據(jù)相似三角形的性質(zhì)解答即可.【題目詳解】解:由題意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,

故△ABC∽△AED,由相似三角形的性質(zhì),設(shè)樹高x米,

則,

∴x=5.1m.

故選:C.【題目點撥】本題考查相似三角形的應(yīng)用,關(guān)鍵是由入射光線和反射光線與鏡面的夾角相等,得出兩個相似三角形.12、C【解題分析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故選C.二、填空題(每題4分,共24分)13、【分析】先判斷,則圖像經(jīng)過第一、三象限,根據(jù)反比例函數(shù)的性質(zhì),即可得到答案.【題目詳解】解:∵,∴反比例函數(shù)的圖象在第一、三象限,且在每個象限內(nèi)y隨x增大而減小,∵,∴,故答案為:.【題目點撥】本題考查了反比例函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是掌握時,反比例函數(shù)經(jīng)過第一、三象限,且在每個象限內(nèi)y隨x增大而減小.14、6【分析】根據(jù)概率公式結(jié)合取出紅球的概率即可求出袋中球的總個數(shù).【題目詳解】解:設(shè)袋中有x個球.根據(jù)題意得,解得x=8(個),8-2=6個,∴袋中有8個白球.故答案為:6.【題目點撥】此題考查了概率的計算方法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.15、【分析】根據(jù)三視圖可得出該幾何體為圓錐,圓錐的表面積=底面積+側(cè)面積(側(cè)面積將圓錐的側(cè)面積不成曲線地展開,是一個扇形.),用字母表示就是S=πr2+πrl(其中l(wèi)=母線,是圓錐的頂點到圓錐的底面圓周之間的距離).【題目詳解】解:由題意可知,該幾何體是圓錐,其中底面半徑為2,母線長為6,∴故答案為:.【題目點撥】本題考查的知識點是幾何體的三視圖以及圓錐的表面積公式,熟記圓錐的面積公式是解此題的關(guān)鍵.16、【分析】連接EC,先根據(jù)題意得出,再得出,然后計算出和的面積即可求解.【題目詳解】連接EC,如下圖所示:由題意可得:∵是中點∴∴∴∴∴∴故填:.【題目點撥】本題主要考查扇形面積的計算、矩形的性質(zhì)、解直角三角形,準(zhǔn)確作出輔助線是關(guān)鍵.17、x<﹣4或0<x<2【分析】(1)根據(jù)一次函數(shù)y=-x+b的圖象與反比例函數(shù)(a≠0)的圖象相交于A(2,﹣4),B(m,2)兩點,可以求得a=-8,m=-4,根據(jù)函數(shù)圖象和點A、B的坐標(biāo)可以得到當(dāng)x為何值時,一次函數(shù)值大于反比例函數(shù)值.【題目詳解】∵一次函數(shù)y=-x+b的圖象與反比例函數(shù)的圖象相交于A(2,-4)、B(m,2)兩點,∴將x=2,y=-4代入得,a=-8;∴將x=m,y=2代入,得m=-4,∴點B(-4,2),∵點A(2,-4),點B(-4,2),∴由函數(shù)的圖象可知,當(dāng)x<﹣4或0<x<2時,一次函數(shù)值大于反比例函數(shù)值.故答案為:x<﹣4或0<x<2.【題目點撥】本題考查反比例函數(shù)和一次函數(shù)的交點問題,解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想,找出所求問題需要的條件.18、【分析】連接OB和AC交于點D,根據(jù)菱形及直角三角形的性質(zhì)先求出AC的長及∠AOC的度數(shù),然后求出菱形ABCO及扇形AOC的面積,則由S扇形AOC-S菱形ABCO可得答案.【題目詳解】連接OB和AC交于點D,如圖所示:∵圓的半徑為2,∴OB=OA=OC=2,又四邊形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=S扇形AOC=則圖中陰影部分面積為S扇形AOC﹣S菱形ABCO=故答案為【題目點撥】本題考查扇形面積的計算及菱形的性質(zhì),解題關(guān)鍵是熟練掌握菱形的面積和扇形的面積,有一定的難度.三、解答題(共78分)19、能,.【分析】根據(jù)平均數(shù)的定義求解可得后兩次數(shù)字之和為8或9;根據(jù)題意畫出樹狀圖,再利用概率公式求其概率.【題目詳解】能設(shè)第4次、第5次轉(zhuǎn)出的數(shù)字分別為和,根據(jù)題意得:,解得:,所以后兩次數(shù)字之和為8或9;畫出樹狀圖:共有9種等情況數(shù),其中“兩次數(shù)字之和為8或9”的有5種,所以.【題目點撥】本題考查用列表法或樹狀圖的方法解決概率問題;求一元一次不等式組的方法以及概率公式的運用.求出事件的所有情況和符合條件的情況數(shù)是解決本題的關(guān)鍵;用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.20、(1)詳見解析;(2)≤≤1【分析】(1)按照列表,取點,連線的步驟畫圖即可;(2)根據(jù)圖象即可得出答案.【題目詳解】解:(1)列表如下:-2-1112351-3-4-31函數(shù)圖象如下圖所示:(2)由圖象可知,當(dāng)1≤x≤3時,≤≤1.【題目點撥】本題主要考查二次函數(shù)的圖象和性質(zhì),掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.21、(1),;(2)點的坐標(biāo)為;(3)存在,點的坐標(biāo)為或或【分析】(1),則OA=4OC=8,故點A(-8,0);△AOC∽△COB,則△ABC為直角三角形,則CO2=OA?OB,解得:OB=2,故點B(2,0);即可求解;

(2)PE=EF,即;即可求解;

(3)分BC是邊、BC是對角線兩種情況,分別求解即可.【題目詳解】解:(1)∵,,∴.由點的坐標(biāo)可知,故,,則點,點.設(shè)拋物線的表達式為,代入點的坐標(biāo),得,解得.故拋物線的表達式為.設(shè)直線的表達式為,代入點、的坐標(biāo),得,解得故直線的表達式為.(2)設(shè)點的坐標(biāo)為,則點的坐標(biāo)分別為,,.∵,∴,解得或(舍去),則,故當(dāng)時,點的坐標(biāo)為.(3)設(shè)點P(m,n),n=,點M(s,0),而點B、C的坐標(biāo)分別為:(2,0)、(0,4);

①當(dāng)BC是邊時,

點B向左平移2個單位向上平移4個單位得到C,

同樣點P(M)向左平移2個單位向上平移4個單位得到M(P),

即m-2=s,n+4=0或m+2=s,n-4=0,

解得:m=-6或±-3,

故點P的坐標(biāo)為:(-6,4)或(-3,-4)或(--3,-4);

②當(dāng)BC是對角線時,

由中點公式得:2=m+s,n=4,

故點P(-6,4);

綜上,點P的坐標(biāo)為:(-6,4)或(-3,-4)或(--3,-4).【題目點撥】此題考查二次函數(shù)綜合運用,一次函數(shù)的性質(zhì),平行四邊形的性質(zhì),三角形相似,解題關(guān)鍵在于注意(3),要注意分類求解,避免遺漏.22、(1)證明見解析;(2);(3)n=2或.【分析】(1)因為GF⊥AF,由對稱易得AE=EF,則由直角三角形的兩個銳角的和為90度,且等邊對等角,即可證明E是AG的中點;(2)可設(shè)AE=a,則AD=na,即需要用n或a表示出AB,由BE⊥AF和∠BAE==∠D=90°,可證明△ABE~△DAC,則,因為AB=DC,且DA,AE已知表示出來了,所以可求出AB,即可解答;(3)求以點F,C,G為頂點的三角形是直角三角形時的n,需要分類討論,一般分三個,∠FCG=90°,∠CFG=90°,∠CGF=90°;根據(jù)點F在矩形ABCD的內(nèi)部就可排除∠FCG=90°,所以就以∠CFG=90°和∠CGF=90°進行分析解答.【題目詳解】(1)證明:由對稱得AE=FE,∴∠EAF=∠EFA,∵GF⊥AE,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG.(2)解:設(shè)AE=a,則AD=na,當(dāng)點F落在AC上時(如圖1),由對稱得BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,又∵∠BAE=∠D=90°,∴△ABE~△DAC,∴∵AB=DC,∴AB2=AD·AE=na·a=na2,∵AB>0,∴AB=,∴∴.(3)解:設(shè)AE=a,則AD=na,由AD=1AB,則AB=.當(dāng)點F落在線段BC上時(如圖2),EF=AE=AB=a,此時,∴n=1,∴當(dāng)點F落在矩形外部時,n>1.∵點F落在矩形的內(nèi)部,點G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,若∠CFG=90°,則點F落在AC上,由(2)得=,∴n=2.若∠CGF=90°(如圖3),則∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE~△DGC,∴,∴AB·DC=DG·AE,即.解得n=或n=<1(不合題意,舍去),∴當(dāng)n=2或時,以點F,C,G為頂點的三角形是直角三角形.考點:矩形的性質(zhì);解直角三角形的應(yīng)用;相似三角形的判定與性質(zhì);分類討論;壓軸題.23、見解析.【分析】根據(jù)兩角相等的兩個三角形相似證明△ADC∽△BEC即可.【題目詳解】證明:∵AD,BE分別是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(對頂角相等)∴△ADC∽△BEC∴.【題目點撥】本題考查了相似三角形的判定,熟練掌握形似三角形的判定方法是解答本題的關(guān)鍵.①有兩個對應(yīng)角相等的三角形相;②有兩個對應(yīng)邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應(yīng)邊的比相等,則兩個三角形相似.24、(1);(2)①,②;(3)【解題分析】(1)作AH⊥OB,根據(jù)正弦的定義即可求解;(2)作MC⊥OB,先求出直線AB解析式,根據(jù)等腰三角形的性質(zhì)及三角函數(shù)的定義求出M點坐標(biāo),根據(jù)MN∥OB,求出N點坐標(biāo);(3)由于點C是定點,點P隨△ABO旋轉(zhuǎn)時的運動軌跡是以B為圓心,BP長為半徑的圓,故根據(jù)點和圓的位置關(guān)系可知,當(dāng)點P在線段OB上時,CP=BP-BC最短;當(dāng)點P在線段OB延長線上時,CP=BP+BC最長.又因為BP的長因點D運動而改變,可先求BP長度的范圍.由垂線段最短可知,當(dāng)BP垂直MN時,BP最短,求得的BP代入CP=BP-BC求CP的最小值;由于BM>BN,所以點P與M重合時,BP=BM最長,代入CP=BP+BC求CP的最大值.【題目詳解】(1)作AH⊥OB,∵,.∴H(3,5)∴AH=3,AH=∴==(2)由(1)得A(3,4),又求得直線AB的解析式為:y=∵旋轉(zhuǎn),∴MB=OB=6,作MC⊥OB,∵AO=BO,∴∠AOB=∠ABO∴MC=MBsin∠ABO=6×=即M點的縱坐標(biāo)為,代入直線AB得x=∴,∵∠NMB=∠AOB=∠ABO∴MN∥OB,又MN=AB=5,則+5=∴(3)連接BP∵點D為線段OA上的動點,OA的對應(yīng)邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論