版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆內(nèi)蒙古數(shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,二次函數(shù)的圖象與軸正半軸相交于A、B兩點,與軸相交于點C,對稱軸為直線且OA=OC,則下列結(jié)論:①②③④關(guān)于的方程有一個根為其中正確的結(jié)論個數(shù)有()A.1個 B.2個 C.3個 D.4個2.方程x2﹣4x+5=0根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.沒有實數(shù)根3.如圖,在邊長為1的正方形組成的網(wǎng)格中,△ABC的頂點都在格點上,將△ABC繞點C順時針旋轉(zhuǎn)60°,則頂點A所經(jīng)過的路徑長為()A.10π B.C.π D.π4.已知點(3,﹣4)在反比例函數(shù)的圖象上,則下列各點也在該反比例函數(shù)圖象上的是()A.(3,4) B.(﹣3,﹣4) C.(﹣2,6) D.(2,6)5.不解方程,則一元二次方程的根的情況是()A.有兩個相等的實數(shù)根 B.沒有實數(shù)根C.有兩個不相等的實數(shù)根 D.以上都不對6.在平面直角坐標(biāo)系中,對于二次函數(shù),下列說法中錯誤的是()A.的最小值為1B.圖象頂點坐標(biāo)為(2,1),對稱軸為直線C.當(dāng)時,的值隨值的增大而增大,當(dāng)時,的值隨值的增大而減小D.它的圖象可以由的圖象向右平移2個單位長度,再向上平移1個單位長度得到7.拋物線,下列說法正確的是()A.開口向下,頂點坐標(biāo) B.開口向上,頂點坐標(biāo)C.開口向下,頂點坐標(biāo) D.開口向上,頂點坐標(biāo)8.己知⊙的半徑是一元二次方程的一個根,圓心到直線的距離.則直線與⊙的位置關(guān)系是A.相離 B.相切 C.相交 D.無法判斷9.二次函數(shù)y=x2﹣2x+1與x軸的交點個數(shù)是()A.0 B.1 C.2 D.310.將拋物線向左平移2個單位后,得到的拋物線的解析式是()A. B.C. D.二、填空題(每小題3分,共24分)11.在△ABC中,若∠A,∠B滿足|cosA-|+(sinB-)2=0,則∠C=_________.12.一個圓錐的側(cè)面展開圖是半徑為8的半圓,則該圓錐的全面積是______________.13.如圖是攔水壩的橫斷面,斜坡的高度為米,斜面的坡比為,則斜坡的長為________米.(保留根號)14.已知某種禮炮的升空高度h(m)與飛行時間t(s)的關(guān)系是h=+20t+1,若此禮炮在升空到最高處時引爆,到引爆需要的時間為_____s.15.如圖,在△ABC中DE∥BC,點D在AB邊上,點E在AC邊上,且AD:DB=2:3,四邊形DBCE的面積是10.5,則△ADE的面積是____.16.如圖,在△ABC中,點D,E分別是AC,BC邊上的中點,則△DEC的周長與△ABC的周長比等于_______.17.方程的兩個根是等腰三角形的底和腰,則這個等腰三角形的周長為.18.一艘觀光游船從港口以北偏東的方向出港觀光,航行海里至處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東方向,馬上以海里每小時的速度前往救援,海警船到達事故船處所需的時間大約為________小時(用根號表示).三、解答題(共66分)19.(10分)計算(1)2sin30°-tan60°+tan45°;(2)tan245°+sin230°-3cos230°20.(6分)四張大小、質(zhì)地均相同的卡片上分別標(biāo)有數(shù)字1,2,3,4,現(xiàn)將標(biāo)有數(shù)字的一面朝下扣在桌子上,從中隨機抽取一張(不放回),再從桌子上剩下的3張中隨機抽取第二張.(1)用畫樹狀圖的方法,列出前后兩次抽得的卡片上所標(biāo)數(shù)字的所有可能情況;(2)計算抽得的兩張卡片上的數(shù)字之積為奇數(shù)的概率是多少?21.(6分)如圖,已知反比例函數(shù)y1=與一次函數(shù)y2=k2x+b的圖象交于點A(2,4),B(﹣4,m)兩點.(1)求k1,k2,b的值;(2)求△AOB的面積;(3)請直接寫出不等式≥k2x+b的解.22.(8分)箱子里有4瓶牛奶,其中有一瓶是過期的.現(xiàn)從這4瓶牛奶中不放回地任意抽取2瓶.(1)請用樹狀圖或列表法把上述所有等可能的結(jié)果表示出來;(2)求抽出的2瓶牛奶中恰好抽到過期牛奶的概率.23.(8分)在如圖所示的方格紙中,每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點及點O都在格點上(每個小方格的頂點叫做格點).(1)以點O為位似中心,在網(wǎng)格區(qū)域內(nèi)畫出△A′B′C′,使△A′B′C′與△ABC位似(A′、B′、C′分別為A、B、C的對應(yīng)點),且位似比為2:1;(2)△A′B′C′的面積為個平方單位;(3)若網(wǎng)格中有一格點D′(異于點C′),且△A′B′D′的面積等于△A′B′C′的面積,請在圖中標(biāo)出所有符合條件的點D′.(如果這樣的點D′不止一個,請用D1′、D2′、…、Dn′標(biāo)出)24.(8分)數(shù)學(xué)概念若點在的內(nèi)部,且、和中有兩個角相等,則稱是的“等角點”,特別地,若這三個角都相等,則稱是的“強等角點”.理解概念(1)若點是的等角點,且,則的度數(shù)是.(2)已知點在的外部,且與點在的異側(cè),并滿足,作的外接圓,連接,交圓于點.當(dāng)?shù)倪厺M足下面的條件時,求證:是的等角點.(要求:只選擇其中一道題進行證明!)①如圖①,②如圖②,深入思考(3)如圖③,在中,、、均小于,用直尺和圓規(guī)作它的強等角點.(不寫作法,保留作圖痕跡)(4)下列關(guān)于“等角點”、“強等角點”的說法:①直角三角形的內(nèi)心是它的等角點;②等腰三角形的內(nèi)心和外心都是它的等角點;③正三角形的中心是它的強等角點;④若一個三角形存在強等角點,則該點到三角形三個頂點的距離相等;⑤若一個三角形存在強等角點,則該點是三角形內(nèi)部到三個頂點距離之和最小的點,其中正確的有.(填序號)25.(10分)如圖,AB和DE直立在地面上的兩根立柱,已知AB=5m,某一時刻AB在太陽光下的影子長BC=3m.(1)在圖中畫出此時DE在太陽光下的影子EF;(2)在測量AB影子長時,同時測量出EF=6m,計算DE的長.26.(10分)如圖,,D、E分別是半徑OA和OB的中點,求證:CD=CE.
參考答案一、選擇題(每小題3分,共30分)1、C【解題分析】由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由圖象可知當(dāng)x=3時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;由OA=OC,得到方程有一個根為-c,設(shè)另一根為x,則=2,解方程可得x=4+c即可判斷④;從而可得出答案.【題目詳解】由圖象開口向下,可知a<0,與y軸的交點在x軸的下方,可知c<0,又對稱軸方程為x=2,所以0,所以b>0,∴abc>0,故①正確;由圖象可知當(dāng)x=3時,y>0,∴9a+3b+c>0,故②錯誤;由圖象可知OA<1.∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正確;∵OA=OC,∴方程有一個根為-c,設(shè)另一根為x.∵對稱軸為直線x=2,∴=2,解得:x=4+c.故④正確;綜上可知正確的結(jié)論有三個.故選C.【題目點撥】本題考查了二次函數(shù)的圖象和性質(zhì).熟練掌握圖象與系數(shù)的關(guān)系以及二次函數(shù)與方程、不等式的關(guān)系是解題的關(guān)鍵.特別是利用好題目中的OA=OC,是解題的關(guān)鍵.2、D【題目詳解】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程沒有實數(shù)根.3、C【題目詳解】如圖所示:在Rt△ACD中,AD=3,DC=1,根據(jù)勾股定理得:AC=,又將△ABC繞點C順時針旋轉(zhuǎn)60°,則頂點A所經(jīng)過的路徑長為l=.故選C.4、C【解題分析】試題解析:∵反比例函數(shù)圖象過點(3,-4),即k=?12,A.∴此點不在反比例函數(shù)的圖象上,故本選項錯誤;B.∴此點不在反比例函數(shù)的圖象上,故本選項錯誤;C.∴此點在反比例函數(shù)的圖象上,故本選項正確.D.∴此點不在反比例函數(shù)的圖象上,故本選項錯誤;故選C.5、C【分析】根據(jù)?值判斷根的情況【題目詳解】解:a=2b=3c=-4∴有兩個不相等的實數(shù)根故本題答案為:C【題目點撥】本題考查了通過根的判別式判斷根的情況,注意a,b,c有符號6、C【分析】根據(jù)題目中的函數(shù)解析式,可以判斷各個選項中的說法是否正確.【題目詳解】解:二次函數(shù),,∴該函數(shù)的圖象開口向上,對稱軸為直線,頂點為,當(dāng)時,有最小值1,當(dāng)時,的值隨值的增大而增大,當(dāng)時,的值隨值的增大而減?。还蔬x項A、B的說法正確,C的說法錯誤;根據(jù)平移的規(guī)律,的圖象向右平移2個單位長度得到,再向上平移1個單位長度得到;故選項D的說法正確,故選C.【題目點撥】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,二次函數(shù)圖象與幾何變換,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.7、C【分析】直接根據(jù)頂點式即可得出頂點坐標(biāo),根據(jù)a的正負(fù)即可判斷開口方向.【題目詳解】∵,∴拋物線開口向下,由頂點式的表達式可知拋物線的頂點坐標(biāo)為,∴拋物線開口向下,頂點坐標(biāo)故選:C.【題目點撥】本題主要考查頂點式的拋物線的表達式,掌握a對開口方向的影響和頂點坐標(biāo)的確定方法是解題的關(guān)鍵.8、A【分析】在判斷直線與圓的位置關(guān)系時,通常要得到圓心到直線的距離,然后再利用d與r的大小關(guān)系進行判斷;在直線與圓的問題中,充分利用構(gòu)造的直角三角形來解決問題,直線與圓的位置關(guān)系:①當(dāng)d>r時,直線與圓相離;②當(dāng)d=r時,直線與圓相切;③當(dāng)d<r時,直線與圓相交.【題目詳解】∵的解為x=4或x=-1,∴r=4,∵4<6,即r<d,∴直線和⊙O的位置關(guān)系是相離.故選A.【題目點撥】本題主要考查了直線與圓的位置關(guān)系,一元二次方程的定義及一般形式,掌握直線與圓的位置關(guān)系,一元二次方程的定義及一般形式是解題的關(guān)鍵.9、B【解題分析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函數(shù)y=x2-2x+1的圖象與x軸有一個交點.故選B.10、A【題目詳解】解:∵拋物線向左平移2個單位后的頂點坐標(biāo)為(﹣2,0),∴所得拋物線的解析式為.故選A.【題目點撥】本題考查二次函數(shù)圖象與幾何變換,利用數(shù)形結(jié)合思想解題是關(guān)鍵.二、填空題(每小題3分,共24分)11、75°【解題分析】根據(jù)絕對值及偶次方的非負(fù)性,可得出cosA及sinB的值,從而得出∠A及∠B的度數(shù),利用三角形的內(nèi)角和定理可得出∠C的度數(shù).【題目詳解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為75°.【題目點撥】本題考查了特殊角的三角函數(shù)值及非負(fù)數(shù)的性質(zhì),解答本題的關(guān)鍵是得出cosA及sinB的值,另外要求我們熟練掌握一些特殊角的三角函數(shù)值.12、48π【分析】首先利用圓的面積公式即可求得側(cè)面積,利用弧長公式求得圓錐的底面半徑,得到底面面積,據(jù)此即可求得圓錐的全面積.【題目詳解】解:側(cè)面積是:,底面圓半徑為:,底面積,故圓錐的全面積是:,故答案為:48π【題目點撥】本題考查了圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.13、【分析】由題意可知斜面坡度為1:2,BC=6m,由此求得AC=12m,再由勾股定理求得AB的長即可.【題目詳解】由題意可知:斜面坡度為1:2,BC=6m,∴AC=12m,由勾股定理可得,AB=m.故答案為6m.【題目點撥】本題考查了解直角三角形的應(yīng)用,根據(jù)坡度構(gòu)造直角三角形是解決問題的關(guān)鍵.14、1【分析】將關(guān)系式h=t2+20t+1轉(zhuǎn)化為頂點式就可以直接求出結(jié)論.【題目詳解】解:∵h=t2+20t+1=(t﹣1)2+11,∴當(dāng)t=1時,h取得最大值,即禮炮從升空到引爆需要的時間為1s,故答案為:1.【題目點撥】本題考查了二次函數(shù)的性質(zhì)頂點式的運用,解答時將一般式化為頂點式是關(guān)鍵.15、1【分析】由AD:DB=1:3,可以得到相似比為1:5,所以得到面積比為4:15,設(shè)△ADE的面積為4x,則△ABC的面積為15x,故四邊形DBCE的面積為11x,根據(jù)題意四邊形的面積為10.5,可以求出x,即可求出△ADE的面積.【題目詳解】∵DE∥BC∴,∵AD:DB=1:3∴相似比=1:5
∴面積比為4:15設(shè)△ADE的面積為4x,則△ABC的面積為15x,故四邊形DBCE的面積為11x∴11x=10.5,解得x=0.5∴△ADE的面積為:4×0.5=1故答案為:1.【題目點撥】本題主要考查了相似三角形,熟練面積比等于相似比的平方以及準(zhǔn)確的列出方程是解決本題的關(guān)鍵.16、1:1.【分析】先根據(jù)三角形中位線定理得出DE∥AB,DE=AB,可推出△CDE∽△CAB,即可得出答案.【題目詳解】解:∵點D,E分別是AC和BC的中點,∴DE為△ABC中位線,∴DE∥AB,DE=AB,∴△CDE∽△CAB,∴==.故答案為:1:1.【題目點撥】本題考查了相似三角形的判定和性質(zhì),三角形的中位線的性質(zhì),熟練掌握相似三角形的判定和性質(zhì)定理是解題的關(guān)鍵.17、1.【題目詳解】解:,得x1=3,x2=6,當(dāng)?shù)妊切蔚娜吺?,3,6時,3+3=6,不符合三角形的三邊關(guān)系定理,∴此時不能組成三角形;當(dāng)?shù)妊切蔚娜吺?,6,6時,此時符合三角形的三邊關(guān)系定理,周長是3+6+6=1.故答案是:118、【分析】過點C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=(海里),然后根據(jù)時間=路程÷速度即可求出海警船到大事故船C處所需的時間.【題目詳解】解:如圖,過點C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=60海里,∴CD=AC=30海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°-37°=53°,∴BC=(海里),∴海警船到大事故船C處所需的時間大約為:20÷40=(小時).故答案為.【題目點撥】本題考查了解直角三角形的應(yīng)用-方向角問題,難度適中,作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.三、解答題(共66分)19、(1)2-;(2)-.
【解題分析】(1)直接利用特殊角的三角函數(shù)值代入即可求出答案;(2)直接利用特殊角的三角函數(shù)值代入即可求出答案.【題目詳解】解:(1)2sin30°-tan60°+tan45°
=2×-+1
=2-;
(2)tan245°+sin230°-3cos230°
=×12+()2-3×()2
=+-
=-.
故答案為:(1)2-;(2)-.【題目點撥】本題考查特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題的關(guān)鍵.20、(1)見解析(2)P(積為奇數(shù))=【分析】(1)用樹狀圖列舉出2次不放回實驗的所有可能情況即可;(2)看是奇數(shù)的情況占所有情況的多少即可.【題目詳解】(1)(2)P(積為奇數(shù))=21、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.【解題分析】(1)由點A的坐標(biāo)利用反比例函數(shù)圖象上點的坐標(biāo)特征,即可得出反比例函數(shù)解析式,再結(jié)合點B的橫坐標(biāo)即可得出點B的坐標(biāo),根據(jù)點A、B的坐標(biāo)利用待定系數(shù)法,即可求出一次函數(shù)解析式;(1)根據(jù)一次函數(shù)圖象上點的坐標(biāo)特征,即可求出一次函數(shù)圖象與y軸的交點坐標(biāo),再利用分割圖形法即可求出△AOB的面積;(3)根據(jù)兩函數(shù)圖象的上下位置關(guān)系,即可得出不等式的解集.【題目詳解】(1)∵反比例函數(shù)y=與一次函數(shù)y=k1x+b的圖象交于點A(1,4),B(﹣4,m),∴k1=1×4=8,m==﹣1,∴點B的坐標(biāo)為(﹣4,﹣1).將A(1,4)、B(﹣4,﹣1)代入y1=k1x+b中,,解得:,∴k1=8,k1=1,b=1.(1)當(dāng)x=0時,y1=x+1=1,∴直線AB與y軸的交點坐標(biāo)為(0,1),∴S△AOB=×1×4+×1×1=2.(3)觀察函數(shù)圖象可知:不等式≥k1x+b的解集為x≤﹣4或0<x≤1.【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,解題的關(guān)鍵是:(1)根據(jù)待定系數(shù)法求出函數(shù)解析式;(1)利用分割圖形法求出△AOB的面積;(3)根據(jù)兩函數(shù)圖象的上下位置關(guān)系找出不等式的解集.22、解:(1)見解析(2)【分析】(1)設(shè)這四瓶牛奶分別記為A、B、C、D,其中過期牛奶為A,畫樹狀圖可得所有等可能結(jié)果;(2)從所有等可能結(jié)果中找到抽出的2瓶牛奶中恰好抽到過期牛奶的結(jié)果數(shù),再根據(jù)概率公式計算可得.【題目詳解】解:(1)設(shè)這四瓶牛奶分別記為A、B、C、D,其中過期牛奶為A,畫樹狀圖如圖所示,由圖可知,共有12種等可能結(jié)果;(2)由樹狀圖知,所抽取的12種等可能結(jié)果中,抽出的2瓶牛奶中恰好抽到過期牛奶的有6種結(jié)果,所以抽出的2瓶牛奶中恰好抽到過期牛奶的概率為.【題目點撥】此題考查了列表法與樹狀圖法,以及概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)詳見解析;(2)10;(3)詳見解析【分析】(1)依據(jù)點O為位似中心,且位似比為2:1,即可得到△A′B′C′;(2)依據(jù)割補法進行計算,即可得出△A′B′C′的面積;(3)依據(jù)△A′B′D′的面積等于△A′B′C′的面積,即可得到所有符合條件的點D′.【題目詳解】解:(1)如圖所示,△A′B′C′即為所求;(2)△A′B′C′的面積為4×6﹣×2×4﹣×2×4﹣×2×6=24﹣4﹣4﹣6=10;故答案為:10;(3)如圖所示,所有符合條件的點D′有5個.【題目點撥】此題主要考查位似圖形的作圖,解題的關(guān)鍵是熟知位似圖形的性質(zhì)及網(wǎng)格的特點.24、(1)100、130或1;(2)選擇①或②,理由見解析;(3)見解析;(4)③⑤【分析】(1)根據(jù)“等角點”的定義,分類討論即可;(2)①根據(jù)在同圓中,弧和弦的關(guān)系和同弧所對的圓周角相等即可證明;②弧和弦的關(guān)系和圓的內(nèi)接四邊形的性質(zhì)即可得出結(jié)論;(3)根據(jù)垂直平分線的性質(zhì)、等邊三角形的性質(zhì)、弧和弦的關(guān)系和同弧所對的圓周角相等作圖即可;(4)根據(jù)“等角點”和“強等角點”的定義,逐一分析判斷即可.【題目詳解】(1)(i)若=時,∴==100°(ii)若時,∴(360°-)=130°;(iii)若=時,360°--=1°,綜上所述:=100°、130°或1°故答案為:100、130或1.(2)選擇①:連接∵∴∴∵,∴∴是的等角點.選擇②連接∵∴∴∵四邊形是圓的內(nèi)接四邊形,∴∵∴∴是的等角點(3)作BC的中垂線MN,以C為圓心,BC的長為半徑作弧交MN與點D,連接BD,根據(jù)垂直平分線的性質(zhì)和作圖方法可得:BD=CD=BC∴△BCD為等邊三角形∴∠BDC=∠BCD=∠DBC=60°作CD的垂直平分線交MN于點O以O(shè)為圓心OB為半徑作圓,交AD于點Q,圓O即為△BCD的外接圓∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=(360°-∠BQC)=120°∴∠BQA=∠CQA=∠BQC如圖③,點即為所求.(4)③⑤.①如下圖所示,在RtABC中,∠ABC=90°,O為△ABC的內(nèi)心假設(shè)∠BAC=60°,∠ACB=30°∵點O是△ABC的內(nèi)心∴∠BAO=∠CAO=∠BAC=30°,∠ABO=∠CBO=∠ABC=45°,∠ACO=∠BCO=∠ACB=15°∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論