版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市同濟大學一附中2024屆高一數(shù)學第一學期期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中,以為最小正周期且在區(qū)間上為增函數(shù)的函數(shù)是()A. B.C. D.2.下列各組函數(shù)中,表示同一個函數(shù)的是()A.與B.與C.與D.與3.如果,那么下列不等式中,一定成立的是()A. B.C. D.4.函數(shù)的零點個數(shù)為(
)A.1 B.2C.3 D.45.將函數(shù)的圖象向左平移個單位長度,再向上平移1個單位長度,得到的圖象,若,且,則的最大值為A. B.C. D.6.函數(shù),x∈R在()A.上是增函數(shù)B.上是減函數(shù)C.上是減函數(shù)D.上是減函數(shù)7.已知集合,集合,則下列結(jié)論正確的是A. B.C. D.8.函數(shù)f(x)=-x+tanx(<x<)的圖象大致為()A. B.C. D.9.已知是第四象限角,是角終邊上的一個點,若,則()A.4 B.-4C. D.不確定10.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移 B.向右平移C.向右平移 D.向左平移二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù)即_____12.要制作一個容器為4,高為無蓋長方形容器,已知該容器的底面造價是每平方米20元,側(cè)面造價是每平方米10元,則該容器的最低總造價是_______(單位:元)13.計算=_______________14.若函數(shù)(,且),在上的最大值比最小值大,則______________.15.各條棱長均相等的四面體相鄰兩個面所成角的余弦值為___________.16.已知函數(shù)則不等式的解集是_____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的最小正周期及其單調(diào)遞減區(qū)間;(2)若,是函數(shù)的零點,不寫步驟,直接用列舉法表示的值組成的集合.18.已知函數(shù)(1)求函數(shù)最小正周期與單調(diào)增區(qū)間;(2)求函數(shù)在上的最大值與最小值19.已知函數(shù)(且)的圖像過點.(1)求a的值;(2)求不等式的解集.20.如圖,已知平面,四邊形為矩形,四邊形為直角梯形,,,,.(1)求證:平面;(2)求三棱錐的體積.21.已知函數(shù)(1)求的最小正周期;(2)求的單調(diào)遞增區(qū)間
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】對四個選項依次判斷最小正周期及單調(diào)區(qū)間,即可判斷.【題目詳解】對于A,,最小正周期為,單調(diào)遞增區(qū)間為,即,在內(nèi)不單調(diào),所以A錯誤;對于B,的最小正周期為,單調(diào)遞增區(qū)間為,即,在內(nèi)單調(diào)遞增,所以B正確;對于C,的最小正周期為,所以C錯誤;對于D,的最小正周期為,所以D錯誤.綜上可知,正確的為B故選:B【題目點撥】本題考查了函數(shù)的最小正周期及單調(diào)區(qū)間的判斷,根據(jù)函數(shù)性質(zhì)判斷即可,屬于基礎(chǔ)題.2、B【解題分析】根據(jù)兩個函數(shù)的定義域相同且對應(yīng)關(guān)系也相同,逐項判斷即可【題目詳解】由于函數(shù)的定義域為,函數(shù)的定義域為,所以與不是同一個函數(shù),故A錯誤;由于的定義域為,函數(shù)且定義域為,所以與是同一函數(shù),故B正確;在函數(shù)中,,解得或,所以函數(shù)的定義域為,在函數(shù)中,,解得,所以的定義域為,所以與不是同一函數(shù),故C錯誤;由于函數(shù)的定義域為,函數(shù)定義域為為,所以與不是同一函數(shù),故D錯誤;故選:B.3、D【解題分析】取,利用不等式性質(zhì)可判斷ABC選項;利用不等式的性質(zhì)可判斷D選項.【題目詳解】若,則,所以,,,ABC均錯;因為,則,因為,則,即.故選:D.4、B【解題分析】函數(shù)的定義域為,且,即函數(shù)為偶函數(shù),當時,,設(shè),則:,據(jù)此可得:,據(jù)此有:,即函數(shù)是區(qū)間上的減函數(shù),由函數(shù)的解析式可知:,則函數(shù)在區(qū)間上有一個零點,結(jié)合函數(shù)的奇偶性可得函數(shù)在R上有2個零點.本題選擇B選項.點睛:函數(shù)零點的求解與判斷方法:(1)直接求零點:令f(x)=0,如果能求出解,則有幾個解就有幾個零點(2)零點存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個零點(3)利用圖象交點的個數(shù):將函數(shù)變形為兩個函數(shù)的差,畫兩個函數(shù)的圖象,看其交點的橫坐標有幾個不同的值,就有幾個不同的零點5、A【解題分析】分析:利用三角函數(shù)的圖象變換,可得,由可得,取,取即可得結(jié)果.詳解:的圖象向左平移個單位長度,再向上平移1個單位長度,得到,,且,,,因為,所以時,取為最小值;時,取為最大值最大值為,故選A.點睛:本題主要考查三角函數(shù)圖象的變換以及三角函數(shù)的性質(zhì),屬于中檔題.能否正確處理先周期變換后相位變換這種情況下圖象的平移問題,反映學生對所學知識理解的深度.6、B【解題分析】化簡,根據(jù)余弦函數(shù)知識確定正確選項.【題目詳解】,所以在上遞增,在上遞減.B正確,ACD選項錯誤.故選:B7、B【解題分析】由題意得,結(jié)合各選項知B正確.選B8、D【解題分析】利用函數(shù)的奇偶性排除部分選項,再利用特殊值判斷.【題目詳解】因為,所以是奇函數(shù),排除BC,又因為,排除A,故選:D9、B【解題分析】利用三角函數(shù)的定義求得.【題目詳解】依題意是第四象限角,所以,.故選:B10、B【解題分析】根據(jù)左右平移的平移特征(左加右減)即可得解.【題目詳解】解:要得到函數(shù)的圖象,只需將函數(shù)的圖象向右平移個單位即可.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、-1【解題分析】結(jié)合函數(shù)的解析式求解函數(shù)值即可.【題目詳解】由題意可得:,則.【題目點撥】求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應(yīng)從內(nèi)到外依次求值12、160【解題分析】設(shè)底面長方形的長寬分別為和,先求側(cè)面積,進一步求出總的造價,利用基本不等式求出最小值.【題目詳解】設(shè)底面長方形的長寬分別為和,則,所以總造價當且僅當?shù)臅r區(qū)到最小值則該容器的最低總造價是160.故答案為:160.13、【解題分析】原式考點:三角函數(shù)化簡與求值14、或.【解題分析】分和兩種情況,根據(jù)指數(shù)函數(shù)的單調(diào)性確定最大值和最小值,根據(jù)已知得到關(guān)于實數(shù)的方程求解即得.【題目詳解】若,則函數(shù)在區(qū)間上單調(diào)遞減,所以,,由題意得,又,故;若,則函數(shù)在區(qū)間上單調(diào)遞增,所以,,由題意得,又,故.所以的值為或.【題目點撥】本題考查函數(shù)的最值問題,涉及指數(shù)函數(shù)的性質(zhì),和分類討論思想,屬基礎(chǔ)題,關(guān)鍵在于根據(jù)指數(shù)函數(shù)的底數(shù)的不同情況確定函數(shù)的單調(diào)性.15、【解題分析】首先利用圖像作出相鄰兩個面所成角,然后利用已知條件求出正四面體相鄰兩個面所成角的兩邊即可求解.【題目詳解】由題意,四面體為正三棱錐,不妨設(shè)正三棱錐的邊長為,過作平面,垂足為,取的中點,并連接、、、,如下圖:由正四面體的性質(zhì)可知,為底面正三角形的中心,從而,,∵為的中點,為正三角形,所以,,所以為正四面體相鄰兩個面所成角∵,∴易得,,∵平面,平面,∴,故.故答案為:.16、【解題分析】分和0的大小關(guān)系分別代入對應(yīng)的解析式即可求解結(jié)論.【題目詳解】∵函數(shù),∴當,即時,,故;當,即時,,故;∴不等式的解集是:.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的最小正周期為,單調(diào)遞減區(qū)間是(2)【解題分析】(1)根據(jù)正弦函數(shù)的最小正周期公式計算可得,根據(jù)正弦函數(shù)的單調(diào)性求出函數(shù)的單調(diào)區(qū)間.(2)先求出函數(shù)的零點,是或中的元素,在分類討論計算可得.【小問1詳解】的最小正周期為:對于函數(shù),當時,單調(diào)遞減,解得所以函數(shù)的單調(diào)遞減區(qū)間是;【小問2詳解】因,即所以函數(shù)的零點滿足:或即或所以是或中的元素當時,則當(或,)時,則當,則所以的值的集合是18、(1),單調(diào)增區(qū)間(2),【解題分析】(1)利用三角恒等變換化簡函數(shù)解析式,可得函數(shù)的最小正周期與的單調(diào)區(qū)間;(2)利用整體法求函數(shù)的最值.【小問1詳解】解:,函數(shù)的最小正周期,令,解得,所以單調(diào)遞增區(qū)間為【小問2詳解】,,,即,所以,.19、(1)(2)【解題分析】(1)代入點坐標計算即可;(2)根據(jù)定義域和單調(diào)性即可獲解【小問1詳解】依題意有∴.【小問2詳解】易知函數(shù)在上單調(diào)遞增,又,∴解得.∴不等式的解集為.20、(1)證明見解析;(2).【解題分析】(1)先證明AC⊥BE,再取的中點,連接,經(jīng)計算,利用勾股定理逆定理得到AC⊥BC,然后利用線面垂直的判定定理證得結(jié)論;(2)利用線面垂直的判定定理證得CM⊥平面BEF,即為所求三棱錐的高,進而計算得到其體積.【題目詳解】解:(1)證明:∵四邊形為矩形∴∵平面∴平面∵平面∴.如圖,取的中點,連接,∴∵,,∴四邊形是正方形.∴∴,∵∴∴是直角三角形∴.∵,、平面∴平面(2)由(1)知:∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《倉庫現(xiàn)場管理》課件
- 《倉庫庫存管理系統(tǒng)》課件
- 《小學細節(jié)描寫》課件
- 單位管理制度集粹選集員工管理篇
- 單位管理制度合并匯編【職員管理】
- 四川省南充市重點高中2024-2025學年高三上學期12月月考地理試卷含答案
- 單位管理制度分享合集職員管理篇十篇
- 單位管理制度范文大合集【人事管理】十篇
- 單位管理制度呈現(xiàn)大全職工管理篇十篇
- 《運算律》教案(20篇)
- 物流倉儲設(shè)備維護保養(yǎng)手冊
- 農(nóng)商銀行小微企業(yè)續(xù)貸實施方案
- 2024年山西廣播電視臺招聘20人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 2024山西太原文化局直屬事業(yè)單位招聘30人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 中國普通食物營養(yǎng)成分表(修正版)
- 2024年北京市第一次普通高中學業(yè)水平合格性考試英語仿真模擬卷03(全解全析)
- 2024年江蘇省淮安技師學院長期招聘高技能人才3人高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 應(yīng)急救援員五級理論考試題庫含答案
- 2024年導游服務(wù)技能大賽《導游綜合知識測試》題庫及答案
- 高中化學實驗開展情況的調(diào)查問卷教師版
- 《聲聲慢(尋尋覓覓)》課件 統(tǒng)編版高中語文必修上冊
評論
0/150
提交評論