垂直于弦的直徑2_第1頁(yè)
垂直于弦的直徑2_第2頁(yè)
垂直于弦的直徑2_第3頁(yè)
垂直于弦的直徑2_第4頁(yè)
垂直于弦的直徑2_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

垂直于弦的直徑?復(fù)習(xí)提問(wèn):1、什么是軸對(duì)稱圖形?我們學(xué)過(guò)哪些軸對(duì)稱圖形?如果一個(gè)圖形沿一條直線對(duì)折,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫軸對(duì)稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對(duì)稱圖形呢?圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它們的對(duì)稱軸.看一看B.OCAEDO.CAEBDAE≠BEAE=BE動(dòng)動(dòng)腦筋

已知:在⊙O中,CD是直徑,AB是弦,CD⊥AB,垂足為E。求證:AE=BE,AC=BC,AD=BD?!小小小蠧.OAEBD疊合法證明:連結(jié)OA、OB,則OA=OB。因?yàn)榇怪庇谙褹B的直徑CD所在的直線既是等腰三角形OAB的對(duì)稱軸又是⊙O的對(duì)稱軸。所以,當(dāng)把圓沿著直徑CD折疊時(shí),CD兩側(cè)的兩個(gè)半圓重合,A點(diǎn)和B點(diǎn)重合,AE和BE重合,AC、AD分別和BC、BD重合。因此AE=BE,AC=BC,AD=BD⌒⌒⌒⌒⌒⌒⌒⌒垂徑定理垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。題設(shè)結(jié)論(1)過(guò)圓心(2)垂直于弦}{(3)平分弦(4)平分弦所對(duì)的優(yōu)弧(5)平分弦所對(duì)的劣弧命題(1):平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧已知:CD是直徑,AB是弦,并且CD平分AB求證:CD⊥AB,AD=BD,AC=BC⌒⌒⌒⌒命題(2):弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧已知:AB是弦,CD平分AB,CD⊥AB,求證:CD是直徑,

AD=BD,AC=BC⌒⌒⌒⌒命題(3):平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧已知:CD是直徑,AB是弦,并且AD=BD(AC=BC)求證:CD平分AB,AC=BC(AD=BD)CD⊥AB⌒⌒⌒⌒⌒⌒⌒⌒.OCAEBDC推論(1)(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條?。?)弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條?。?)平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)和的另一條弧垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。推論(1)(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條?。?)弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條?。?)平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧垂徑定理記憶根據(jù)垂徑定理與推論可知對(duì)于一個(gè)圓和一條直線來(lái)說(shuō)。如果具備(1)過(guò)圓心(2)垂直于弦(3)平分弦(4)平分弦所對(duì)的優(yōu)弧(5)平分弦所對(duì)的劣弧上述五個(gè)條件中的任何兩個(gè)條件都可以推出其他三個(gè)結(jié)論注意判斷(1)垂直于弦的直線平分弦,并且平分弦所對(duì)的弧…………..()(2)弦所對(duì)的兩弧中點(diǎn)的連線,垂直于弦,并且經(jīng)過(guò)圓心……..()(3)圓不與直徑垂直的弦必不被這條直徑平分…………...()(4)平分弦的直徑垂直于弦,并且平分弦所對(duì)的兩條弧………()(5)圓內(nèi)兩條非直徑的弦不能互相平分()×√××√例1已知:如圖,在以O(shè)為圓心的兩個(gè)同心圓中,大圓的弦AB交小圓于C,D兩點(diǎn)。求證:AC=BD。證明:過(guò)O作OE⊥AB,垂足為E,則AE=BE,CE=DE。AE-CE=BE-DE。所以,AC=BDE.ACDBO講解例2已知:⊙O中弦AB∥CD。求證:AC=BD⌒⌒證明:作直徑MN⊥AB。∵AB∥CD,∴MN⊥CD。則AM=BM,CM=DM(垂直平分弦的直徑平分弦所對(duì)的弦)AM-CM=BM-DM∴AC=BD⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒.MCDABON講解小結(jié):

解決有關(guān)弦的問(wèn)題,經(jīng)常是過(guò)圓心作弦的垂線,或作垂直于弦的直徑,連結(jié)半徑等輔助線,為應(yīng)用垂徑定理創(chuàng)造條件。.CDABO

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論