




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年廣東省東華高級中學高二上數學期末教學質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.公元前6世紀,古希臘的畢達哥拉斯學派研究發(fā)現了黃金分割,簡稱黃金數.離心率等于黃金數的倒數的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.2.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.3.若是雙曲線的左右焦點,是坐標原點.過作的一條漸近線的垂線,垂足為,若,則該雙曲線的離心率為()A. B.C. D.4.如圖,P是橢圓第一象限上一點,A,B,C是橢圓與坐標軸的交點,O為坐標原點,過A作AN平行于直線BP交y軸于N,直線CP交x軸于M,直線BP交x軸于E.現有下列三個式子:①;②;③.其中為定值的所有編號是()A.①③ B.②③C.①② D.①②③5.已知E、F分別為橢圓的左、右焦點,傾斜角為的直線l過點E,且與橢圓交于A,B兩點,則的周長為A.10 B.12C.16 D.206.設等差數列,前n項和分別是,若,則()A.1 B.C. D.7.數列1,6,15,28,45,...中的每一項都可用如圖所示的六邊形表示出來,故稱它們?yōu)榱呅螖担敲吹?0個六邊形數為()A.153 B.190C.231 D.2768.若拋物線與直線:相交于兩點,則弦的長為()A.6 B.8C. D.9.已知數列的前項和為,當時,()A.11 B.20C.33 D.3510.中國農歷的二十四節(jié)氣是中華民族的智慧與傳統(tǒng)文化的結晶,二十四節(jié)氣歌是以春、夏、秋、冬開始的四句詩.在國際氣象界,二十四節(jié)氣被譽為“中國的第五大發(fā)明”.2016年11月30日,二十四節(jié)氣被正式列入聯合國教科文組織人類非物質文化遺產代表作名錄.某小學三年級共有學生600名,隨機抽查100名學生并提問二十四節(jié)氣歌,只能說出一句的有45人,能說出兩句及以上的有38人,據此估計該校三年級的600名學生中,對二十四節(jié)氣歌一句也說不出的有()A.17人 B.83人C.102人 D.115人11.已知等差數列滿足,則等于()A. B.C. D.12.在棱長為2的正方體中,為線段的中點,則點到直線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖①,用一個平面去截圓錐,得到的截口曲線是橢圓.許多人從純幾何的角度出發(fā)對這個問題進行過研究,其中比利時數學家(1794-1847)的方法非常巧妙,極具創(chuàng)造性.在圓錐內放兩個大小不同的球,使得它們分別與圓錐的側面,截面相切,兩個球分別與截面相切于,在截口曲線上任取一點,過作圓錐的母線,分別與兩個球相切于,由球和圓的幾何性質,可以知道,,于是.由的產生方法可知,它們之間的距離是定值,由橢圓定義可知,截口曲線是以為焦點的橢圓.如圖②,一個半徑為2的球放在桌面上,桌面上方有一個點光源,則球在桌面上的投影是橢圓.已知是橢圓的長軸,垂直于桌面且與球相切,,則橢圓的離心率為___________.14.已知函數,數列是正項等比數列,且,則__________15.已知,用割線逼近切線的方法可以求得___________.16.無窮數列滿足:只要必有則稱為“和諧遞進數列”.已知為“和諧遞進數列”,且前四項成等比數列,,則=_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,C是圓B:(B是圓心)上一動點,線段AC的垂直平分線交BC于點P(1)求動點P的軌跡的方程;(2)設E,F為與x軸的兩交點,Q是直線上動點,直線QE,QF分別交于M,N兩點,求證:直線MN過定點18.(12分)已知圓C的圓心在坐標原點,且過點M()(1)求圓C的方程;(2)已知點P是圓C上的動點,試求點P到直線的距離的最小值;19.(12分)已知橢圓的左、右焦點分別為,若焦距為4,點P是橢圓上與左、右頂點不重合的點,且的面積最大值.(1)求橢圓的方程;(2)過點的直線交橢圓于點、,且滿足(為坐標原點),求直線的方程.20.(12分)設p:關于x的不等式有解,q:.(1)若p為真命題,求實數m的取值范圍;(2)若為假命題,為真命題,求實數m的取值范圍.21.(12分)已知動圓過點且動圓內切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線的方程;(2)若、是曲線上兩點,點滿足求直線的方程.22.(10分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,______,求m的值從下列三個條件中任選一個補充在上面問題中并作答:條件①:;條件②:圓上一點P到直線的最大距離為;條件③:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因為雙曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A2、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設,設,求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設,由在長方體中,,,設,可得,在直角中,可得,在中,可得,所以,因為,所以.故選:C.3、D【解析】根據已知條件,找出,的齊次關系式即可得到雙曲線的離心率.【詳解】由題意得,,,在中,,因,故,在,由余弦定理得,即,計算得,故.故選:D.【點睛】雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據一個條件得到關于a,b,c的齊次式,結合轉化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或轉化為關于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)4、D【解析】根據斜率的公式,可以得到的值是定值,然后結合已知逐一判斷即可.【詳解】設,所以有,,因此,所以有,,,,,,故,,.故選:D【點睛】關鍵點睛:利用斜率公式得到之間的關系是解題的關鍵.5、D【解析】利用橢圓的定義即可得到結果【詳解】橢圓,可得,三角形的周長,,所以:周長,由橢圓的第一定義,,所以,周長故選D【點睛】本題考查橢圓簡單性質的應用,橢圓的定義的應用,三角形的周長的求法,屬于基本知識的考查6、B【解析】根據等差數列的性質和求和公式變形求解即可【詳解】因為等差數列,的前n項和分別是,所以,故選:B7、B【解析】細心觀察,尋求相鄰項及項與序號之間的關系,同時聯系相關知識,如等差數列、等比數列等,結合圖形可知,,,,,,,據此即可求解.【詳解】由題意知,數列的各項為1,6,15,28,45,...所以,,,,,,所以.故選:B【點睛】本題考查合情推理中的歸納推理;考查邏輯推理能力;觀察分析、尋求規(guī)律是求解本題的關鍵;屬于中檔題、探索型試題.8、B【解析】由題得拋物線的焦點坐標為剛好在直線上,再聯立直線和拋物線的方程,利用韋達定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點坐標為剛好在直線上,設,聯立直線和拋物線方程得,所以.所以.故選:B9、B【解析】由數列的性質可得,計算可得到答案.【詳解】由題意,.故答案為B.【點睛】本題考查了數列的前n項和的性質,屬于基礎題.10、C【解析】根據頻率計算出正確答案.【詳解】一句也說不出的學生頻率為,所以估計名學生中,一句也說不出的有人.故選:C11、A【解析】利用等差中項求出的值,進而可求得的值.【詳解】因為得,因此,.故選:A.12、D【解析】根據正方體的性質,在直角△中應用等面積法求到直線的距離.【詳解】由正方體的性質:面,又面,故,直角△中,若到上的高為,∴,而,,,∴.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】利用球與圓錐相切,得出截面,在平面圖形中求解,以及圓錐曲線的來源來理解切點為橢圓的一個焦點,求出,得出離心率.【詳解】設球切于,切于E,,球半徑為2,所以,,∴,又中,,,故橢圓長軸長為,,根據橢圓在圓錐中截面與二球相切的切點為橢圓的焦點知:球O與相切的切點為橢圓的一個焦點,且,,橢圓的離心率為.故答案:.14、##9.5【解析】根據給定條件計算當時,的值,再結合等比數列性質計算作答.【詳解】函數,當時,,因數列是正項等比數列,且,則,,同理,令,又,則有,,所以.故答案為:15、【解析】根據導數的定義直接計算即可【詳解】因為,所以,故答案為:16、7578【解析】根據新定義得數列是周期數列,從而易求得【詳解】∵成等比數列,,∴,又,為“和諧遞進數列”,∴,,,,…,∴數列是周期數列,周期為4∴故答案為:7578三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)根據,利用橢圓的定義求解;(2)(解法1)設,得到,的方程,與橢圓方程聯立,求得M,N的坐標,寫出直線的方程求解;(解法2)上同解法1,由對稱性分析知動直線MN所過定點一定在x軸上,設所求定點為,由C,D,T三點共線,然后由求解;(解法3)設,由,,設:,:,其中,與橢圓方程聯立,整理得,由F,M,N三點的橫坐標為該方程的三個根,得到:求解.【小問1詳解】解:由題知,則,由橢圓的定義知動點P的軌跡為以A,B為焦點,6為長軸長的橢圓,所以軌跡的方程為【小問2詳解】(解法1)易知E,F為橢圓的長軸兩端點,不妨設,,設,則,,于是:,:,聯立得,解得或,易得,同理當,即時,:;當時,有,于是:,即綜上直線MN過定點(解法2)上同解法1,得,,由對稱性分析知動直線MN所過定點一定在x軸上,設所求定點為,由C,D,T三點共線,得,即,于是,整理得,由t的任意性知,即,所以直線MN過定點(解法3)設,則,,當時,直線MN即為x軸;當時,因為,所以,則,設:,:,其中,聯立,得,整理得,易知F,M,N三點的橫坐標為該方程的三個根,所以:,由及的任意性,知直線MN過定點18、(1)(2)【解析】(1)由圓C的圓心在坐標原點,且過點,求得圓的半徑,利用圓的標準方程,即可求解;(2)由點到直線的距離公式,求得圓心到直線l的距離為,進而得到點P到直線的距離的最小值為,得出答案.【詳解】(1)由題意,圓C的圓心在坐標原點,且過點,所以圓C的半徑為,所以圓C的方程為.(2)由題意,圓心到直線l的距離為,所以P到直線的距離的最小值為.【點睛】本題主要考查了圓標準方程的求解,以及直線與圓的位置關系的應用,其中解答中熟練應用直線與圓的位置關系合理轉化是解答的關鍵,著重考查了轉化思想,以及推理與計算能力,屬于基礎題.19、(1)(2)或【解析】(1)根據焦距求出,利用面積最大值,得到求出,從而得到,求出橢圓方程;(2)分直線斜率存在和斜率不存在,結合題干條件得到,進而求出直線方程.【小問1詳解】∵∴,又的面積最大值,則,所以,從而,,故橢圓的方程為:;【小問2詳解】①當直線的斜率存在時,設,代入③整理得,設、,則,所以,點到直線的距離因為,即,又由,得,所以,.而,,即,解得:,此時;②當直線的斜率不存在時,,直線交橢圓于點、.也有,經檢驗,上述直線均滿足,綜上:直線的方程為或.【點睛】圓錐曲線中,有關向量的題目,要結合條件選擇不同的方法,一般思路有轉化為三角形面積,或者線段的比,或者由向量得到共線等.20、(1)(2)【解析】根據題意,解出p和q里面m的范圍即可求解﹒其中有解,則≥0﹒【小問1詳解】p為真命題時,,解得,所以m的取值范圍是;【小問2詳解】q為真命題時,即,解得,所以q為假命題時,或,由(1)知,p為假時,因為為假命題,為真命題,所以p,q為一真一假,當p真q假時,且“或”,解得;當p假q真時,,解得;綜上:m的取值范圍是21、(1);(2).【解析】(1)根據兩圓內切,以及圓過定點列式求軌跡方程;(2)利用重心坐標公式可知,,再設直線的方程為與橢圓方程聯立,利用根與系數的關系求解直線方程.【詳解】(1)由已知可得,兩式相加可得則點的軌跡是以、為焦點,長軸長為的橢圓,則因此曲線的方程是(2)因為,則點是的重心,易得直線的斜率存在,設直線的方程為,聯立消得:且①②由①②解得則直線的方程為即【點睛】本題考查直線與橢圓的問題關系,本題的關鍵是根據求得,.22、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 IEC 60794-2-20:2024 EN-FR Optical fibre cables - Part 2-20: Indoor cables - Family specification for multi-fibre optical cables
- 2025-2030年中國鋰電池負極材料市場運行狀況與前景趨勢分析報告
- 2025-2030年中國鋼簾線市場發(fā)展現狀及前景趨勢分析報告
- 2025-2030年中國西樂器制造市場十三五規(guī)劃及投資策略研究報告
- 2025-2030年中國茄尼醇行業(yè)風險評估規(guī)劃研究報告
- 2025-2030年中國紅花籽油市場運行狀況及未來發(fā)展趨勢預測報告
- 貴州應用技術職業(yè)學院《傳熱學B》2023-2024學年第二學期期末試卷
- 伊犁師范大學《中學思想政治課程與教學論》2023-2024學年第二學期期末試卷
- 撫州職業(yè)技術學院《無機非金屬材料機械設備》2023-2024學年第二學期期末試卷
- 貴州工程應用技術學院《經濟寫作》2023-2024學年第二學期期末試卷
- 三晉卓越聯盟·山西省2024-2025學年度高三9月質量檢測+語文試卷
- 《那一刻我長大了》習作課件
- 教科版小學科學六年級上冊期末考試試卷(含答案)
- 父母買房在子女名下協(xié)議書范本
- DBJ15 31-2016建筑地基基礎設計規(guī)范(廣東省標準)
- 高危新生兒管理專家共識解讀
- 《紡織服裝材料》課件-0緒論
- 盤扣式卸料平臺施工方案
- 繪本故事在小學道德與法治課堂中的有效教學策略分析
- 2024核桃樹承包合同
- 保險授權書格式模板
評論
0/150
提交評論