




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023-2024學年遼寧省葫蘆島市協(xié)作校高二數(shù)學第一學期期末調(diào)研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為調(diào)查學生的課外閱讀情況,學校從高二年級四個班的182人中隨機抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機剔除的個數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,22.如圖,樣本和分別取自兩個不同的總體,它們的平均數(shù)分別為和,標準差分別為和,則()AB.C.D.3.若集合,,則A. B.C. D.4.在平面上給定相異兩點,設點在同一平面上且滿足,當且時,點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.5.已知正實數(shù)a,b滿足,若不等式對任意的實數(shù)x恒成立,則實數(shù)m的取值范圍是()A. B.C. D.6.已知,,,則點C到直線AB的距離為()A.3 B.C. D.7.已知直線m經(jīng)過,兩點,則直線m的斜率為()A.-2 B.C. D.28.如圖所示,正方體的棱長為2,以其所有面的中心為頂點的多面體的表面積為()A. B.C.8 D.129.在圓內(nèi),過點的最長弦和最短弦分別是AC和BD,則四邊形ABCD的面積為()A. B.C. D.10.公元前6世紀,古希臘的畢達哥拉斯學派研究發(fā)現(xiàn)了黃金分割,簡稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.11.過點且與雙曲線有相同漸近線的雙曲線方程為()A B.C. D.12.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點為圓的弦的中點,則弦所在直線方程為________.14.將全體正整數(shù)排成一個三角形數(shù)陣:按照以上排列的規(guī)律,第行從左向右的第2個數(shù)為____________.15.設,,若將函數(shù)的圖像向左平移個單位能使其圖像與原圖像重合,則正實數(shù)的最小值為___________.16.已知橢圓的左、右頂點分別為A,B,橢圓C的左、右焦點分別為F1,F(xiàn)2,點為橢圓C的下頂點,直線MA與MB的斜率之積為.(1)求橢圓C的方程;(2)設點P,Q為橢圓C上位于x軸下方的兩點,且,求四邊形面積的最大值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關,經(jīng)統(tǒng)計得到如下數(shù)據(jù):x12345678y56.53122.7517.815.9514.51312.5根據(jù)以上數(shù)據(jù)繪制了散點圖觀察散點圖,兩個變量間關系考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量的關系進行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與x的相關系數(shù).(1)用反比例函數(shù)模型求y關于x的回歸方程;(2)用相關系數(shù)判斷上述兩個模型哪一個擬合效果更好(精確到0.001),并用其估計產(chǎn)量為10千件時每件產(chǎn)品非原料成本;(3)根據(jù)企業(yè)長期研究表明,非原料成本y服從正態(tài)分布,用樣本平均數(shù)作為的估計值,用樣本標準差s作為的估計值,若非原料成本y在之外,說明該成本異常,并稱落在之外的成本為異樣成本,此時需尋找出現(xiàn)異樣成本的原因.利用估計值判斷上述非原料成本數(shù)據(jù)是否需要尋找出現(xiàn)異樣成本的原因?參考數(shù)據(jù)(其中):0.340.1151.531845777.55593.0630.70513.9參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:,,相關系數(shù).18.(12分)已知橢圓:的左、右焦點分別為,,離心率等于,點,且的面積等于(1)求橢圓的標準方程;(2)已知斜率存在且不為0的直線與橢圓交于A,B兩點,當點A關于y軸的對稱點在直線PB上時,直線是否過定點?若過定點,求出此定點;若不過,請說明理由19.(12分)已知雙曲線與有相同的漸近線,且經(jīng)過點.(1)求雙曲線的方程;(2)已知直線與雙曲線交于不同的兩點,且線段的中點在圓上,求實數(shù)的值.20.(12分)如圖,四棱錐P-ABCD的底面ABCD是菱形,PA⊥AB,PA⊥AD,且E、F分別是AC、PB的中點(1)證明:EF∥平面PCD;(2)求證:平面PBD⊥平面PAC21.(12分)已知斜率為的直線與橢圓:交于,兩點(1)若線段的中點為,求的值;(2)若,求證:原點到直線的距離為定值22.(10分)如圖所示,在直四棱柱中,底面ABCD是菱形,點E,F(xiàn)分別在棱,上,且,(1)證明:點在平面BEF內(nèi);(2)若,,,求直線與平面BEF所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機剔除人.故選:A.2、B【解析】直接根據(jù)圖表得到答案.【詳解】根據(jù)圖表:樣本數(shù)據(jù)均小于等于10,樣本數(shù)據(jù)均大于等于10,故;樣本數(shù)據(jù)波動大于樣本數(shù)據(jù),故.故選:B.3、A【解析】通過解不等式得出集合B,可以做出集合A與集合B的關系示意圖,可得出選項.【詳解】因為,解不等式即,所以或,所以集合,作出集合A與集合B的示意圖如下圖所示:所以:,故選A【點睛】本題考查集合間的交集運算,屬于基礎題.4、C【解析】先求動點的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設,,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當位于圓的最高點時的面積最大,所以,解得;當位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.5、D【解析】利用基本不等式求出的最小值16,分離參數(shù)即可.【詳解】因為,,,所以,當且僅當,即,時取等號由題意,得,即對任意的實數(shù)x恒成立,又,所以,即故選:D6、D【解析】應用空間向量的坐標運算求在上投影長及的模長,再應用勾股定理求點C到直線AB的距離.【詳解】因為,,所以設點C到直線AB的距離為d,則故選:D7、A【解析】根據(jù)斜率公式求得正確答案.【詳解】直線的斜率為:.故選:A8、B【解析】首先確定幾何體的空間結(jié)構(gòu)特征,然后求解其表面積即可.【詳解】由題意知,該幾何體是一個由8個全等的正三角形圍成的多面體,正三角形的邊長為:,正三角形邊上的一條高為:,所以一個正三角形的面積為:,所以多面體的表面積為:.故選:B9、D【解析】由題,求得圓的圓心和半徑,易知最長弦,最短弦為過點與垂直的弦,再求得BD的長,可得面積.【詳解】圓化簡為可得圓心為易知過點的最長弦為直徑,即而最短弦為過與垂直的弦,圓心到的距離:所以弦所以四邊形ABCD的面積:故選:D10、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因為雙曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A11、C【解析】設與雙曲線有相同漸近線的雙曲線方程為,代入點的坐標,求出的值,即可的解.【詳解】設與雙曲線有相同漸近線的雙曲線方程為,代入點,得,解得,所以所求雙曲線方程為,即故選:C.12、B【解析】根據(jù)空間向量運算求得正確答案.【詳解】.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】因為為圓的弦的中點,所以圓心坐標為,,所在直線方程為,化簡為,故答案為.考點:1、兩直線垂直斜率的關系;2、點斜式求直線方程.14、【解析】通過觀察、分析、歸納,找出規(guī)律運算求解即可【詳解】前行共有正整數(shù)個,即個,因此第行第個數(shù)是全體正整數(shù)中第個,即為故答案為:15、【解析】根據(jù)正弦型函數(shù)圖像平移法則和正弦函數(shù)性質(zhì)進行解題.【詳解】解:由題意得:函數(shù)的圖像向左平移個單位后得:該函數(shù)與原函數(shù)圖像重合故可知,即故當時,最小正實數(shù).故答案為:16、(1)(2)【解析】(1)由斜率之積求得,再由已知條件得,從而得橢圓方程;(2)延長QF2交橢圓于N點,連接,,設直線,,.直線方程代入橢圓方程,應用韋達定理得,結(jié)合不等式的性質(zhì)、函數(shù)的單調(diào)性可得的范圍,再計算出四邊形面積得結(jié)論【小問1詳解】由題知:,,,又,∴橢圓.【小問2詳解】延長QF2交橢圓于N點,連接,,如下圖所示:,∴設直線,,.由,得,,,.,由勾形函數(shù)的單調(diào)性得,根據(jù)對稱性得:,且,,∴四邊形面積的最大值為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)反比例函數(shù)模型擬合效果更好,產(chǎn)量為10千件時每件產(chǎn)品的非原料成本約為11元,(3)見解析【解析】(1)令,則可轉(zhuǎn)化為,求出樣本中心,回歸方程的斜率,轉(zhuǎn)化求回歸方程即可,(2)求出與的相關系數(shù),通過比較,可得用反比例函數(shù)模型擬合效果更好,然后將代入回歸方程中可求結(jié)果(3)利用已知數(shù)據(jù)求出樣本標準差s,從而可得非原料成本y服從正態(tài)分布,再計算,然后各個數(shù)據(jù)是否在此范圍內(nèi),從而可得結(jié)論【小問1詳解】令,則可轉(zhuǎn)化為,因為,所以,所以,所以,所以y關于x的回歸方程為【小問2詳解】與的相關系數(shù)為因為,所以用反比例函數(shù)模型擬合效果更好,把代入回歸方程得(元),所以產(chǎn)量為10千件時每件產(chǎn)品的非原料成本約為11元【小問3詳解】因為,所以,因為樣本標準差為,所以,所以非原料成本y服從正態(tài)分布,所以因為在之外,所以需要此非原料成本數(shù)據(jù)尋找出現(xiàn)異樣成本的原因18、(1)(2)【解析】(1)用待定系數(shù)法求出橢圓的標準方程;(2)設直線的方程為,設,用“設而不求法”表示出和.表示出直線PB,把A關于y軸的對稱點為帶入后整理化簡,即可得到,從而可以判斷出直線恒過定點.【小問1詳解】由題意可得:,解得:,所以橢圓的標準方程為:.【小問2詳解】由題意可知,直線的斜率存在且不為0,設直線的方程為,設設點A關于y軸的對稱點為.聯(lián)立方程組,消去y可得:,所以.因為直線PB的方程為,且點D在直線PB上,所以則,所以,則,故,因為k≠0,所以,則直線l的方程為,所以直線恒過定點.19、(1)(2)【解析】(1)根據(jù)所求雙曲線與有共同的漸近線可設出所求雙曲線方程為,在根據(jù)點在雙曲線上,代入雙曲線方程中即可求解.(2)聯(lián)立直線與雙曲線的方程,得關于的一元二次方程,利用韋達定理得出的關系,再根據(jù)中點坐標公式求出線段的中點的坐標,代入圓方程即可求解.【小問1詳解】由題意,設雙曲線的方程為,則又因為雙曲線過點,,所以雙曲線的方程為:【小問2詳解】由,消去整理,得,設,則因為直線與雙曲線交于不同的兩點,所以,解得.,所以則中點坐標為,代入圓得,解得.實數(shù)的值為20、(1)證明見解析;(2)證明見解析.【解析】(1)連結(jié),證明EF∥PD即可;(2)證明BD⊥平面PAC即可【小問1詳解】連結(jié),則是的中點,又是的中點,,又平面,面,平面【小問2詳解】∵PA⊥AB,PA⊥AD,AB∩AD=A,AB、AD平面ABCD,∴PA⊥平面ABCD,∵BD平面ABCD,∴PA⊥BD,是菱形,,又,平面,又平面,∴平面平面﹒21、(1);(2)證明見解析.【解析】(1)設出兩點的坐標,利用點差法即可求出的值;(2)設出直線的方程,與橢圓方程聯(lián)立,寫韋達;根據(jù),求出,從而可證明原點到直線的距離為定值【小問1詳解】設,則,,兩式相減,得,即,所以,即,又因為線段的中點為,所以,即;【小問2詳解】設斜率為的直線為,,由,得,所以,,因為,所以,即,所以,所以,即,所以,原點到直線的距離為.所以原點到直線的距離為定值.22、(1)證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西南林業(yè)大學《繪畫基礎色彩色彩肖像》2023-2024學年第二學期期末試卷
- 長治學院《地理時空大數(shù)據(jù)》2023-2024學年第二學期期末試卷
- 廣東郵電職業(yè)技術學院《設計論文寫作》2023-2024學年第二學期期末試卷
- 山東師范大學《中國現(xiàn)當代文學名篇賞析》2023-2024學年第二學期期末試卷
- 中南大學《室內(nèi)空間設計》2023-2024學年第二學期期末試卷
- 江西應用工程職業(yè)學院《Linux操作系統(tǒng)》2023-2024學年第二學期期末試卷
- 度軟件研發(fā)與戰(zhàn)略合作合同模板
- 適應工時新規(guī)-綜合計件勞動合同范本
- 房產(chǎn)交易合同擔保:二手房買賣合同范本
- 智能儀器儀表智能家居應用考核試卷
- 礦山機械傷害安全培訓
- 2025貴州省黔東南州直屬事業(yè)單位招聘202人易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年語文高考復習計劃解析
- 新生兒腸道病毒感染
- 2025年度專業(yè)酒店裝修承攬合同
- 15J403-1-樓梯欄桿欄板(一)
- 《數(shù)學課程標準》義務教育2022年修訂版(原版)
- DL∕T 5210.4-2018 電力建設施工質(zhì)量驗收規(guī)程 第4部分:熱工儀表及控制裝置
- 15j403-1樓梯欄桿標準
- 服裝購銷合同最新版
- 中層干部輪崗交流動員會上的講話
評論
0/150
提交評論