2023-2024學(xué)年蘇州大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2023-2024學(xué)年蘇州大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2023-2024學(xué)年蘇州大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2023-2024學(xué)年蘇州大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2023-2024學(xué)年蘇州大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年蘇州大學(xué)附屬中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在正項(xiàng)等比數(shù)列中,,,則()A27 B.64C.81 D.2562.直線平分圓的周長,過點(diǎn)作圓的一條切線,切點(diǎn)為,則()A.5 B.C.3 D.3.在平形六面體中,其中,,,,,則的長為()A. B.C. D.4.變量與的數(shù)據(jù)如表所示,其中缺少了一個數(shù)值,已知關(guān)于的線性回歸方程為,則缺少的數(shù)值為()22232425262324▲2628A.24 B.25C.25.5 D.265.如圖是拋物線拱形橋,當(dāng)水面在時,拱頂離水面,水面寬,若水面上升,則水面寬是()(結(jié)果精確到)(參考數(shù)值:)A B.C. D.6.設(shè)變量滿足約束條件,則的最大值為()A.0 B.C.3 D.47.若數(shù)列滿足,則()A.2 B.6C.12 D.208.已知橢圓的左、右頂點(diǎn)分別為,上、下頂點(diǎn)分別為.點(diǎn)為上不在坐標(biāo)軸上的任意一點(diǎn),且四條直線的斜率之積大于,則的離心率的取值范圍是()A. B.C. D.9.設(shè),則當(dāng)數(shù)列{an}的前n項(xiàng)和取得最小值時,n的值為()A.4 B.5C.4或5 D.5或610.已知雙曲線,過點(diǎn)作直線l,若l與該雙曲線只有一個公共點(diǎn),這樣的直線條數(shù)為()A.1 B.2C.3 D.411.已知三棱柱中,,,D點(diǎn)是線段上靠近A的一個三等分點(diǎn),則()A. B.C. D.12.下列函數(shù)是偶函數(shù)且在上是減函數(shù)的是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線在點(diǎn)處的切線方程是,則的值為______14.已知長方體的棱,則異面直線與所成角的大小是________________.(結(jié)果用反三角函數(shù)值表示)15.已知直線過拋物線的焦點(diǎn),且與的對稱軸垂直,與交于,兩點(diǎn),,為的準(zhǔn)線上一點(diǎn),則的面積為________16.在等差數(shù)列中,前n項(xiàng)和記作,若,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,動點(diǎn)到點(diǎn)的距離等于點(diǎn)到直線的距離.(1)求動點(diǎn)的軌跡方程;(2)記動點(diǎn)的軌跡為曲線,過點(diǎn)的直線與曲線交于兩點(diǎn),在軸上是否存在一點(diǎn),使若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.18.(12分)在數(shù)列中,,.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)在平面直角坐標(biāo)系內(nèi),橢圓E:過點(diǎn),離心率為(1)求E的方程;(2)設(shè)直線(k∈R)與橢圓E交于A,B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使得對任意實(shí)數(shù)k,直線AM,BM的斜率乘積為定值?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由20.(12分)已知數(shù)列滿足各項(xiàng)均不為0,,且,.(1)證明:為等差數(shù)列,并求的通項(xiàng)公式;(2)令,,求.21.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對的邊分別為,,,且滿足,,求面積的最大值22.(10分)如圖,四棱錐的底面為正方形,底面,設(shè)平面與平面的交線為.(1)證明:;(2)已知,為直線上的點(diǎn),求與平面所成角的正弦值的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)等比數(shù)列的通項(xiàng)公式求出公比,進(jìn)而求得答案.【詳解】設(shè)的公比為,則(負(fù)值舍去),所以.故選:C.2、B【解析】根據(jù)圓的性質(zhì),結(jié)合圓的切線的性質(zhì)進(jìn)行求解即可.【詳解】由,所以該圓的圓心為,半徑為,因?yàn)橹本€平分圓的周長,所以圓心在直線上,故,因此,,所以有,所以,故選:B3、B【解析】根據(jù)空間向量基本定理、加法的運(yùn)算法則,結(jié)合空間向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭瞧叫辛骟w,所以,所以有:,因此有:,因?yàn)?,,,,,所以,所以,故選:B4、A【解析】可設(shè)出缺少的數(shù)值,利用表中的數(shù)據(jù),分別表示出、,將樣本中心點(diǎn)帶入回歸方程,即可求得參數(shù).【詳解】設(shè)缺少的數(shù)值為,則,,因?yàn)榛貧w直線方程經(jīng)過樣本點(diǎn)的中心,所以,解得.故選:A5、C【解析】先建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,將點(diǎn)坐標(biāo)代入拋物線方程求出m,從而可得拋物線方程,再令y=代入拋物線方程求出x,即可得到答案【詳解】解:如圖建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,由題意,將代入x2=my,得m=,所以拋物線的方程為x2=,令y=,解得,所以水面寬度為2.24×817.9m故選:C6、A【解析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標(biāo)函數(shù)的幾何意義,即可求出目標(biāo)函數(shù)的最大值.【詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因?yàn)槟繕?biāo)函數(shù),即,表示斜率為,截距為的直線,由圖可知,當(dāng)直線經(jīng)過時截距取得最小值,即取得最大值,所以的最大值為,故選:A.7、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D8、A【解析】設(shè),求得,得到,求得,結(jié)合,即可求解.【詳解】由橢圓的方程,可得,設(shè),則,由,因?yàn)樗臈l直線的斜率之積大于,即,所以,則離心率,又因?yàn)闄E圓離心率,所以橢圓的離心率的取值范圍是.故選:A.9、A【解析】結(jié)合等差數(shù)列的性質(zhì)得到,解不等式組即可求出結(jié)果.【詳解】由,即,解得,因?yàn)?故.故選:A.10、D【解析】先確定雙曲線的右頂點(diǎn),再分垂直軸、與軸不垂直兩種情況討論,當(dāng)與軸不垂直時,可設(shè)直線方程為,聯(lián)立直線與拋物線方程,消元整理,再分、兩種情況討論,即可得解【詳解】解:根據(jù)雙曲線方程可知右頂點(diǎn)為,使與有且只有一個公共點(diǎn)情況為:①當(dāng)垂直軸時,此時過點(diǎn)的直線方程為,與雙曲線只有一個公共點(diǎn),②當(dāng)與軸不垂直時,可設(shè)直線方程為聯(lián)立方程可得當(dāng)即時,方程只有一個根,此時直線與雙曲線只有一個公共點(diǎn),當(dāng)時,,整理可得即故選:D11、A【解析】在三棱柱中,,轉(zhuǎn)化為結(jié)合已知條件計(jì)算即可.【詳解】在三棱柱中,滿足,且,則,,D點(diǎn)是線段上靠近A的一個三等分點(diǎn),則,由向量的減法運(yùn)算得,.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:在三棱柱中,,由向量的減法運(yùn)算得,再展開利用數(shù)量積運(yùn)算.12、C【解析】根據(jù)題意,依次分析選項(xiàng)中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案【詳解】根據(jù)題意,依次分析選項(xiàng):對于A,為一次函數(shù),不是偶函數(shù),不符合題意;對于B,,,為奇函數(shù),不是偶函數(shù),不符合題意;對于C,,為二次函數(shù),是偶函數(shù)且在上是減函數(shù),符合題意;對于D,,,為奇函數(shù),不是偶函數(shù),不符合題意;故選C【點(diǎn)睛】本題考查函數(shù)的奇偶性與單調(diào)性的判定,關(guān)鍵是掌握常見函數(shù)的奇偶性與單調(diào)性,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】根據(jù)給定條件結(jié)合導(dǎo)數(shù)的幾何意義直接計(jì)算作答.【詳解】因曲線在點(diǎn)處的切線方程是,則,,所以.故答案為:1114、【解析】建立空間直角坐標(biāo)系,求出異面直線與的方向向量,再求出兩向量的夾角,進(jìn)而可得異面直線與所成角的大小【詳解】解:建立如圖所示的空間直角坐標(biāo)系:在長方體中,,,,,,,,,,異面直線與所成角的大小是故答案為:15、【解析】先設(shè)出拋物線方程,寫出準(zhǔn)線方程和焦點(diǎn)坐標(biāo),利用得到拋物線方程,再利用三角形的面積公式進(jìn)行求解.【詳解】設(shè)拋物線的方程為,則焦點(diǎn)為,準(zhǔn)線方程為,由題意,得,,,所以,解得,所以.故答案為:.16、16【解析】根據(jù)等差數(shù)列前項(xiàng)和公式及下標(biāo)和性質(zhì)以及通項(xiàng)公式計(jì)算可得;【詳解】解:因?yàn)?,所以,即,所以,所以,所以;故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)利用拋物線的定義即求;(2)由題可設(shè)直線的方程為,利用韋達(dá)定理法結(jié)合條件可得,即得.【小問1詳解】因?yàn)閯狱c(diǎn)到點(diǎn)的距離等于點(diǎn)到直線的距離,所以動點(diǎn)到點(diǎn)的距離和它到直線的距離相等,所以點(diǎn)的軌跡是以為焦點(diǎn),以直線為準(zhǔn)線的拋物線,設(shè)拋物線方程為,由,得,所以動點(diǎn)的軌跡方程為.【小問2詳解】由題意可知,直線的斜率不為0,故設(shè)直線的方程為,.聯(lián)立,得,恒成立,由韋達(dá)定理,得,,假設(shè)存在一點(diǎn),滿足題意,則直線的斜率與直線的斜率滿足,即,所以,所以解得,所以存在一點(diǎn),滿足,點(diǎn)的坐標(biāo)為.18、(1)證明見解析,;(2).【解析】(1)利用等比數(shù)列的定義結(jié)合已知條件即可得到證明.(2)運(yùn)用分組求和的方法,利用等比數(shù)列和等差數(shù)列前項(xiàng)和公式求解即可.【詳解】(1)證明:∵,∴數(shù)列為首項(xiàng)是2,公比是2的等比數(shù)列.∴,∴.(2)由(1)知,,【點(diǎn)睛】本題考查等比數(shù)列的定義,通項(xiàng)公式的應(yīng)用,考查等差數(shù)列和等比數(shù)列前項(xiàng)和公式的應(yīng)用,考查分組求和的方法,屬于基礎(chǔ)題.19、(1)(2)存在,或者【解析】(1)由離心率和橢圓經(jīng)過的點(diǎn)列出方程組,求出,得到橢圓方程;(2)假設(shè)存在,設(shè)出直線,聯(lián)立橢圓,利用韋達(dá)定理得到兩根之和,兩根之積,結(jié)合斜率乘積為定值得到關(guān)于的方程,求出答案.【小問1詳解】由題可得,,①由,得,即,則,②將②代入①,解得,,故E的方程為【小問2詳解】設(shè)存在點(diǎn)滿足條件記,由消去y,得.顯然,判別式>0,所以,,于是===上式為定值,當(dāng)且僅當(dāng),解得或此時,或所以,存在定點(diǎn)或者滿足條件20、(1)證明見解析,,(2)【解析】(1)根據(jù)題意,結(jié)合遞推公式,易知,即可求證;(2)根據(jù)題意,結(jié)合錯位相減法,即可求解.【小問1詳解】∵,∴,,∴等差數(shù)列,首項(xiàng)為,公差為3.∴,即,.【小問2詳解】根據(jù)題意,得,,①,②①-②得,故.21、(1)(2)【解析】(1)由三角恒等變換公式化簡,根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問2詳解】,,故,得,由余弦定理得:,得,當(dāng)且僅當(dāng)時等號成立,故,面積最大值為22、(1)證明見解析(2)【解析】(1)由可證得平面,根據(jù)線面平行的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論