2023-2024學(xué)年浙江省余姚八中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2023-2024學(xué)年浙江省余姚八中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2023-2024學(xué)年浙江省余姚八中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2023-2024學(xué)年浙江省余姚八中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2023-2024學(xué)年浙江省余姚八中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年浙江省余姚八中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的兩個焦點分別為,且平行于軸的直線與橢圓交于兩點,那么的值為()A. B.C. D.2.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),且,當(dāng)時,,則不等式的解集為()A. B.C. D.3.已知等差數(shù)列的前n項和為Sn,首項a1=1,若,則公差d的取值范圍為()A. B.C. D.4.某學(xué)生2021年共參加10次數(shù)學(xué)競賽模擬考試,成績分別記為,,,…,,為研究該生成績的起伏變化程度,選用一下哪個數(shù)字特征最為合適()A.,,,…,的平均值; B.,,,…,的標(biāo)準(zhǔn)差;C.,,,…,的中位數(shù); D.,,,…,的眾數(shù);5.直線被橢圓截得的弦長是A. B.C. D.6.在中,已知角A,B,C所對邊為a,b,c,,,,則()A. B.C. D.17.在的展開式中,只有第4項的二項式系數(shù)最大,且所有項的系數(shù)和為0,則含的項的系數(shù)為()A.-20 B.-15C.-6 D.158.在平面直角坐標(biāo)系中,橢圓的左、右焦點分別為,,過且垂直于軸的直線與交于,兩點,與軸交于點,,則的離心率為()A. B.C. D.9.設(shè)函數(shù),則曲線在點處的切線方程為()A. B.C. D.10.我國的刺繡有著悠久的歷史,如圖,(1)(2)(3)(4)為刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形個數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含個小正方形,則的表達(dá)式為()A. B.C. D.11.已知點,和直線,若在坐標(biāo)平面內(nèi)存在一點P,使,且點P到直線l的距離為2,則點P的坐標(biāo)為()A.或 B.或C.或 D.或12.等差數(shù)列中,是的前項和,,則()A.40 B.45C.50 D.55二、填空題:本題共4小題,每小題5分,共20分。13.在1和9之間插入三個數(shù),使這五個數(shù)成等比數(shù)列,則中間三個數(shù)的積等于________.14.若拋物線的焦點與橢圓的右焦點重合,則實數(shù)m的值為______.15.已知空間向量,,若,則______16.設(shè)函數(shù),.若對任何,,恒成立,求的取值范圍______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知某學(xué)校的初中、高中年級的在校學(xué)生人數(shù)之比為9:11,該校為了解學(xué)生的課下做作業(yè)時間,用分層抽樣的方法在初中、高中年級的在校學(xué)生中共抽取了100名學(xué)生,調(diào)查了他們課下做作業(yè)的時間,并根據(jù)調(diào)查結(jié)果繪制了如下頻率分布直方圖:(1)在抽取的100名學(xué)生中,初中、高中年級各抽取的人數(shù)是多少?(2)根據(jù)頻率分布直方圖,估計學(xué)生做作業(yè)時間的中位數(shù)和平均時長(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(3)另據(jù)調(diào)查,這100人中做作業(yè)時間超過4小時的人中2人來自初中年級,3人來自高中年級,從中任選2人,恰好1人來自初中年級,1人來自高中年級的概率是多少18.(12分)已知函數(shù)f(x)=x﹣lnx(1)求曲線y=f(x)在點(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值.19.(12分)如圖所示,在三棱柱中,,點在平面ABC上的射影為線段AC的中點D,側(cè)面是邊長為2的菱形(1)若△ABC是正三角形,求異面直線與BC所成角的余弦值;(2)當(dāng)直線與平面所成角的正弦值為時,求線段BD的長20.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對的邊分別為,,,且滿足,,求面積的最大值21.(12分)已知直線與圓.(1)當(dāng)直線l恰好平分圓C的周長時,求m的值;(2)當(dāng)直線l被圓C截得的弦長為時,求m的值.22.(10分)在①,②,③這三個條件中任選一個,補充在下面橫線上,并解答.在中,內(nèi)角,,的對邊分別為,,,且___________.(1)求角的大?。唬?)已知,,點在邊上,且,求線段的長.注:如果選擇多個條件分別解答,按第一個解答計分.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)橢圓的方程求出,再由橢圓的對稱性及定義求解即可.【詳解】由橢圓的對稱性可知,,所以,又橢圓方程為,所以,解得,所以,故選:A2、D【解析】設(shè),則,分析可得為偶函數(shù)且,求出的導(dǎo)數(shù),分析可得在上為減函數(shù),進(jìn)而分析可得上,,在上,,結(jié)合函數(shù)的奇偶性可得上,,在上,,又由即,則有或,據(jù)此分析可得答案【詳解】根據(jù)題意,設(shè),則,若奇函數(shù),則,則有,即函數(shù)為偶函數(shù),又由,則,則,,又由當(dāng)時,,則在上為減函數(shù),又由,則在上,,在上,,又由為偶函數(shù),則在上,,在上,,即,則有或,故或,即不等式的解集為;故選:D3、A【解析】該等差數(shù)列有最大值,可分析得,據(jù)此可求解.【詳解】,故,故有故d取值范圍為.故選:A4、B【解析】根據(jù)平均數(shù)、標(biāo)準(zhǔn)差、中位數(shù)及眾數(shù)的概念即得.【詳解】根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的概念可知,平均數(shù)、中位數(shù)、眾數(shù)描述數(shù)據(jù)的集中趨勢,標(biāo)準(zhǔn)差描述數(shù)據(jù)的波動大小估計數(shù)據(jù)的穩(wěn)定程度.故選:B.5、A【解析】直線y=x+1代入,得出關(guān)于x的二次方程,求出交點坐標(biāo),即可求出弦長【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長為故選A【點睛】本題查直線與橢圓的位置關(guān)系,考查弦長的計算,屬于基礎(chǔ)題6、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.7、C【解析】先由只有第4項的二項式系數(shù)最大,求出n=6;再由展開式的所有項的系數(shù)和為0,用賦值法求出,用通項公式求出的項的系數(shù).【詳解】∵在的展開式中,只有第4項的二項式系數(shù)最大,∴在的展開式有7項,即n=6;而展開式的所有項的系數(shù)和為0,令x=1,代入,即,所以.∴是展開式的通項公式為:,要求含的項,只需,解得,所以系數(shù)為.故選:C8、B【解析】由題意結(jié)合幾何性質(zhì)可得為等腰三角形,且,所以,求出的長,結(jié)合橢圓的定義可得答案.【詳解】如圖,由題意軸,軸,則又為的中點,則為的中點,又,則為等腰三角形,且,所以將代入橢圓方程得,,即所以,則由橢圓的定義可得,即則橢圓的離心率故選:B9、A【解析】利用導(dǎo)數(shù)的幾何意義求解即可【詳解】由,得,所以切線的斜率為,所以切線方程為,即,故選:A10、D【解析】先分別觀察給出正方體的個數(shù)為:1,,,,總結(jié)一般性的規(guī)律,將一般性的數(shù)列轉(zhuǎn)化為特殊的數(shù)列再求解【詳解】解:根據(jù)前面四個發(fā)現(xiàn)規(guī)律:,,,,,累加得:,,故選:【點睛】本題主要考查了歸納推理,屬于中檔題11、C【解析】設(shè)點的坐標(biāo)為,根據(jù),點到直線的距離為,聯(lián)立方程組即可求解.【詳解】解:設(shè)點的坐標(biāo)為,線段的中點的坐標(biāo)為,,∴的垂直平分線方程為,即,∵點在直線上,∴,又點到直線:的距離為,∴,即,聯(lián)立可得、或、,∴所求點的坐標(biāo)為或,故選:C12、B【解析】應(yīng)用等差數(shù)列的性質(zhì)“若,則”即可求解【詳解】故選:B二、填空題:本題共4小題,每小題5分,共20分。13、27【解析】設(shè)公比為,利用已知條件求出,然后根據(jù)通項公式可求得答案【詳解】設(shè)公比為,插入的三個數(shù)分別為,因為,所以,得,所以,故答案為:2714、【解析】分別求出橢圓和拋物線的焦點坐標(biāo)即可出值.【詳解】由橢圓方程可知,,,則,即橢圓的右焦點的坐標(biāo)為,拋物線的焦點坐標(biāo)為,∵拋物線的焦點與橢圓的右焦點重合,∴,即,故答案為:.15、7【解析】根據(jù)題意,結(jié)合空間向量的坐標(biāo)運算,即可求解.【詳解】根據(jù)題意,易知,因為,所以,即,解得故答案為:716、【解析】先把原不等式轉(zhuǎn)化為恒成立,構(gòu)造函數(shù),利用恒成立,求出的取值范圍.【詳解】因為對任何,,所以對任何,,所以在上為減函數(shù).,,所以恒成立,即對恒成立,所以,所以.即的取值范圍是.故答案為:.【點睛】恒(能)成立問題求參數(shù)的取值范圍:①參變分離,轉(zhuǎn)化為不含參數(shù)的最值問題;②不能參變分離,直接對參數(shù)討論,研究的單調(diào)性及最值;③特別地,個別情況下恒成立,可轉(zhuǎn)換為(二者在同一處取得最值).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)初中、高中年級所抽取人數(shù)分別為45、55(2)2.375小時,2.4小時(3)【解析】(1)依據(jù)分層抽樣的原則列方程即可解決;(2)依據(jù)頻率分布直方圖計算學(xué)生做作業(yè)時間的中位數(shù)和平均時長即可;(3)依據(jù)古典概型即可求得恰好1人來自初中年級,1人來自高中年級的概率.【小問1詳解】設(shè)初中、高中年級所抽取人數(shù)分別為x、y,由已知可得,解得;【小問2詳解】的頻率為,的頻率為,的頻率為因為,,所以中位數(shù)在區(qū)間上,設(shè)為x,則,解得,所以學(xué)生做作業(yè)時間的中位數(shù)為2.375小時;平均時長為小時.故估計學(xué)生做作業(yè)時間的中位數(shù)為2.375小時,平均時長為2.4小時【小問3詳解】2人來自初中年級,記為,,3人來自高中年級,記為,,,則從中任選2人,所有可能結(jié)果有:,,,,,,,,,共10種,其中恰好1人來自初中年級,1人來自高中年級有6種可能,所以恰好1人來自初中年級,1人來自高中年級的概率為18、(1)(2)極小值為,無極大值【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)數(shù)的幾何意義即可求出切線方程;(2)根據(jù)導(dǎo)數(shù)的符號求出函數(shù)的單調(diào)區(qū)間,再根據(jù)極值的定義即可得出答案.【小問1詳解】解:,則,,即切線的斜率為0,所以曲線y=f(x)在點(1,f(1))處曲線的切線方程為;小問2詳解】當(dāng)時,,當(dāng)時,,所以函數(shù)在上遞減,在上遞增,函數(shù)的極小值為,無極大值.19、(1)(2)或【解析】(1)建立空間直角坐標(biāo)系,利用向量法求得直線與所成角的余弦值.(2)結(jié)合直線與平面所成的角,利用向量法列方程,化簡求得的長.【小問1詳解】依題意點在平面ABC上的射影為線段AC的中點D,所以平面,,由于,所以,以為空間坐標(biāo)原點建立如圖所示空間直角坐標(biāo)系,,,當(dāng)是等邊三角形時,,.設(shè)直線與所成角為,則.【小問2詳解】設(shè),則,,設(shè)平面的法向量為,則,故可設(shè),設(shè)直線與平面所成角為,則,化簡的,解得或,也即或.20、(1)(2)【解析】(1)由三角恒等變換公式化簡,根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問2詳解】,,故,得,由余弦定理得:,得,當(dāng)且僅當(dāng)時等號成立,故,面積最大值為21、(1);(2)1.【解析】(1)將圓C的圓心坐標(biāo)代入直線l的方程計算作答.(2)由給定條件求出圓心C到直線l的距離,再利用點到直線距離公式計算作答.【小問1詳解】圓的圓心,半徑,因直線l平分圓C的周長,則直線l過圓心,即,解得,所以m的值是.【小問2詳解】由(1)知,圓C的圓心,半徑,因直線l被圓C截得的弦長為,則有圓心C到直線l的距離,因此,,解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論