




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆北京市人民大學附屬中學數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B.C. D.2.已知四棱錐,平面PAB,平面PAB,底面ABCD是梯形,,,,滿足上述條件的四棱錐的頂點P的軌跡是()A.橢圓 B.橢圓的一部分C.圓 D.不完整的圓3.從全體三位正整數(shù)中任取一數(shù),則此數(shù)以2為底的對數(shù)也是正整數(shù)的概率為()A. B.C. D.以上全不對4.傾斜角為120°,在x軸上截距為-1的直線方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=05.若函數(shù)有兩個不同的極值點,則實數(shù)的取值范圍是()A. B.C. D.6.已知的展開式中,各項系數(shù)的和與其各項二項式系數(shù)的和之比為,則()A.4 B.5C.6 D.77.某高中學校高二和高三年級共有學生人,為了解該校學生的視力情況,現(xiàn)采用分層抽樣的方法從三個年級中抽取一個容量為的樣本,其中高一年級抽取人,則高一年級學生人數(shù)為()A. B.C. D.8.已知梯形中,,且,則的值為()A. B.C. D.9.雙曲線型自然通風塔外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.10.我們通常稱離心率是的橢圓為“黃金橢圓”.如圖,已知橢圓,,,,分別為左、右、上、下頂點,,分別為左、右焦點,為橢圓上一點,下列條件中能使橢圓為“黃金橢圓”的是()A. B.C.軸,且 D.四邊形的一個內(nèi)角為11.直線被圓所截得的弦長為()A. B.C. D.12.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,定義使()為整數(shù)的k叫做“幸福數(shù)”,則區(qū)間內(nèi)所有“幸福數(shù)”的和為_____14.如圖,正方形ABCD的邊長為8,取正方形ABCD各邊的中點E,F(xiàn),G,H,作第2個正方形EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL.依此方法一直繼續(xù)下去.①從正方形ABCD開始,第7個正方形的邊長為___;②如果這個作圖過程可以一直繼續(xù)下去,那么作到第n個正方形,這n個正方形的面積之和為___.15.若圓C:與圓D2的公共弦長為,則圓D的半徑為___________.16.某足球俱樂部選拔青少年隊員,每人要進行3項測試.甲隊員每項測試通過的概率均為,且不同測試之間相互獨立,設他通過的測試項目數(shù)為X,則_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為等差數(shù)列,前n項和為,數(shù)列是首項為1的等比數(shù)列,,,.(1)求和的通項公式;(2)求數(shù)列的前n項和.18.(12分)在中,角的對邊分別為,且.(1)求;(2)若,的面積為,求.19.(12分)已知函數(shù)在與處都取得極值.(1)求a,b的值;(2)若對任意,不等式恒成立,求實數(shù)c的取值范圍.20.(12分)為讓“雙減”工作落實到位,某中學積極響應上級號召,全面推進中小學生課后延時服務,推行課后服務“”模式,開展了內(nèi)容豐富、形式多樣、有利于學生身心成長的活動.該中學初一共有700名學生其中男生400名、女生300名.為讓課后服務更受歡迎,該校準備推行體育類與藝術(shù)類兩大類活動于2021年9月在初一學生中進行了問卷調(diào)查.(1)調(diào)查結(jié)果顯示:有的男學生和的女學生愿意參加體育類活動,其他男學生與女學生都不愿意參加體育類活動,請完成下邊列聯(lián)表.并判斷是否有的把握認為愿意參加體育類活動與學生的性別相關?愿意參加體育活動情況性別愿意參加體育類活動不愿意參加體育類活動合計男學生女學生合計(2)在開展了兩個月活動課后,為了了解學生的活動課情況,在初一年級學生中按男女比例分層抽取7名學生調(diào)查情況,并從這7名學生中隨機選擇3名學生進行展示,用X表示選出進行展示的3名學生中女學生的人數(shù),求隨機變量X的分布列和數(shù)學期望.0.1000.0500.0250.0102.7063.8415.0246.635參考公式:,其中.21.(12分)在等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和.22.(10分)正四棱柱的底面邊長為2,側(cè)棱長為4.E為棱上的動點,F(xiàn)為棱的中點.(1)證明:;(2)若E為棱上的中點,求直線BE到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】寫出每次循環(huán)的結(jié)果,即可得到答案.【詳解】當時,,,,;,此時,退出循環(huán),輸出的的為.故選:B【點睛】本題考查程序框圖的應用,此類題要注意何時循環(huán)結(jié)束,建議數(shù)據(jù)不大時采用寫出來的辦法,是一道容易題.2、D【解析】根據(jù)題意,分析得動點滿足的條件,結(jié)合圓以及橢圓的方程,以及點的限制條件,即可判斷軌跡.【詳解】因為平面PAB,平面PAB,則//,又面面,故可得;因為,故可得,則,綜上所述:動點在垂直的平面中,且滿足;為方便研究,不妨建立平面直角坐標系進行說明,在平面中,因為,以中點為坐標原點,以為軸,過且垂直于的直線為軸建立平面直角坐標系,如下所示:因為,故可得,整理得:,故動點的軌跡是一個圓;又當三點共線時,幾何體不是空間幾何體,故動點的軌跡是一個不完整的圓.故選:.【點睛】本題考察立體幾何中動點的軌跡問題,處理的關鍵是利用立體幾何知識,找到動點滿足的條件,進而求解軌跡.3、B【解析】利用古典概型的概率求法求解.【詳解】從全體三位正整數(shù)中任取一數(shù)共有900種取法,以2為底的對數(shù)也是正整數(shù)的三位數(shù)有,共3個,所以以此數(shù)以2為底的對數(shù)也是正整數(shù)的概率為,故選:B4、D【解析】由傾斜角求出斜率,寫出斜截式方程,再化為一般式【詳解】由于傾斜角為120°,故斜率k=-.又直線過點(-1,0),所以方程為y=-(x+1),即x+y+=0.故選:D.【點睛】本題考查直線方程的斜截式,屬于基礎題5、D【解析】計算,然后等價于在(0,+∞)由2個不同的實數(shù)根,然后計算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個不同的極值點,則在(0,+∞)由2個不同的實數(shù)根,故,解得:,故選:D.【點睛】本題考查根據(jù)函數(shù)極值點個數(shù)求參,考查計算能力以及思維轉(zhuǎn)變能力,屬基礎題.6、C【解析】利用賦值法確定展開式中各項系數(shù)的和以及二項式系數(shù)的和,利用比值為,列出關于的方程,解方程.【詳解】二項式的各項系數(shù)的和為,二項式的各項二項式系數(shù)的和為,因為各項系數(shù)的和與其各項二項式系數(shù)的和之比為,所以,.故選:C.7、B【解析】先得到從高二和高三年級抽取人,再利用分層抽樣進行求解.【詳解】設高一年級學生人數(shù)為,因為從三個年級中抽取一個容量為的樣本,且高一年級抽取人,所以從高二和高三年級抽取人,則,解得,即高一年級學生人數(shù)為.故選:B8、D【解析】根據(jù)共線定理、平面向量的加法和減法法則,即可求得,進而求出的值,即可求出結(jié)果.【詳解】因為,所以又,所以.故選:D.9、A【解析】以的中點О為坐標原點,建立平面直角坐標系,設雙曲線的方程為,設,,代入雙曲線的方程,求得,得到,進而求得雙曲線的離心率.【詳解】以的中點О為坐標原點,建立如圖所示的平面直角坐標系,則,設雙曲線的方程為,則,可設,,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷10、B【解析】先求出橢圓的頂點和焦點坐標,對于A,根據(jù)橢圓的基本性質(zhì)求出離心率判斷A;對于B,根據(jù)勾股定理以及離心率公式判斷B;根據(jù)結(jié)合斜率公式以及離心率公式判斷C;由四邊形的一個內(nèi)角為,即即三角形是等邊三角形,得到,結(jié)合離心率公式判斷D.【詳解】∵橢圓∴對于A,若,則,∴,∴,不滿足條件,故A不符合條件;對于B,,∴∴,∴∴,解得或(舍去),故B符合條件;對于C,軸,且,∴∵∴,解得∵,∴∴,不滿足題意,故C不符合條件;對于D,四邊形的一個內(nèi)角為,即即三角形是等邊三角形,∴∴,解得∴,故D不符合條件故選:B【點睛】本題主要考查了求橢圓離心率,涉及了勾股定理,斜率公式等的應用,充分利用建立的等式是解題關鍵.11、A【解析】求得圓心坐標和半徑,結(jié)合點到直線的距離公式和圓的弦長公式,即可求解.【詳解】由圓的方程可知圓心為,半徑為,圓心到直線的距離,所以弦長為.故選:A.12、A【解析】由題得c=1,再根據(jù)△MF2N的周長=4a=8得a=2,進而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,∴c=1,又根據(jù)橢圓的定義,△MF2N的周長=4a=8,得a=2,進而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學生對這些知識的掌握水平和分析推理能力.二、填空題:本題共4小題,每小題5分,共20分。13、2036【解析】先用換底公式化簡之后,將表示出來,找出滿足條件的“幸福數(shù)”,然后求和即可.【詳解】當時,,所以,若滿足正整數(shù),則,即,所以在內(nèi)的所有“幸福數(shù)”的和為:,故答案為:2036.14、①.1②.【解析】根據(jù)題意,正方形邊長成等比數(shù)列,正方形的面積等于邊長的平方可得,然后根據(jù)等比數(shù)列的通項公式及等比數(shù)列的前n項和的公式即可求解.【詳解】設第n個正方形的邊長為,第n個正方形的面積為,則第n個正方形的對角線長為,所以第n+1個正方形的邊長為,,∴數(shù)列{}是首項為,公比為的等比數(shù)列,,∴,即第7個正方形的邊長為1;∴數(shù)列{}是首項為,公比為的等比數(shù)列,故答案為:1;.15、【解析】首先根據(jù)圓與圓的位置關系得到公共弦方程,再根據(jù)弦長求解即可.【詳解】根據(jù)得公共弦方程為:.因為公共弦長為,所以直線過圓的圓心.所以,解得.故答案為:16、【解析】根據(jù)二項分布的方差公式即可求出【詳解】因為,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的通項公式為,的通項公式為;(2).【解析】(1)用基本量表示題干中的量,聯(lián)立求解即可;(2)由,,用乘公比錯位相減法求和即可.【詳解】(1)設等差數(shù)列的公差為d,等比數(shù)列的公比為q.由已知,得,而,所以,解得,所以.由得.①,由得.②,聯(lián)立①②解得,所以.故的通項公式為,的通項公式為.(2)設數(shù)列的前n項和為,由,得.,,上述兩式相減,得,所以,即.18、(1);(2).【解析】(1)由正弦定理得到,兩邊消去公因式得到,化一即可求得角A;(2)因為,所以,再結(jié)合余弦定理得到結(jié)果.【詳解】(1)由,得,因為,所以,整理得:,因,所以.(2)因為,所以,因為及,所以,即.【點睛】本題主要考查正弦定理及余弦定理的應用以及三角形面積公式,屬于難題.在解與三角形有關的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進行解答.19、(1),;(2).【解析】(1)極值點處導數(shù)值為零,據(jù)此即可求出a和b;(2)利用導數(shù)求出f(x)在時的最大值即可.【小問1詳解】由題設,,又,,解得,.【小問2詳解】由(1)得,即,當時,,隨的變化情況如下表:1+0-0+遞增極大值遞減極小值遞增∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,∴當時,為極大值,又,顯然f(-)<f(2)所以為在上的最大值.要使對任意恒成立,則只需,解得或c>1.∴實數(shù)c的取值范圍為.20、(1)詳見解析;(2)詳見解析.【解析】(1)根據(jù)初一男生數(shù)和女生數(shù),結(jié)合有的男學生和的女學生,愿意參加體育類活動求解;計算的值,再與臨界值表對照下結(jié)論;(2)根據(jù)這7名學生中男生有4名,女生有3名,隨機選擇3名由抽到女學生的人數(shù)X可能為0,1,2,3,分別求得其概率,列出分布列,再求期望.【小問1詳解】解:因為初一共有700名學生其中男生400名、女生300名,且有的男學生和的女學生,所以愿意參加體育類活動的男生有300名,女生有200名,則列聯(lián)表如下:愿意參加體育活動情況性別愿意參加體育類活動不愿意參加體育類活動合計男學生300100400女學生200100300合計500200700,所以有的把握認為愿意參加體育類活動與學生的性別相關;【小問2詳解】這7名學生中男生有4名,女生有3名,隨機選擇3名學生進行展示,抽到女學生的人數(shù)X可能為0,1,2,3,所以,,所以隨機變量X分布列如下:X0123p21、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得數(shù)列的通項公式.(2)令,分和去掉絕對值,根據(jù)等差數(shù)列的求和公式求得.【小問1詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025護士入院筆試題目及答案
- 工程造價計算試題及答案
- 房地產(chǎn)中介行業(yè)2025年規(guī)范發(fā)展與服務質(zhì)量提升營銷策略報告
- 生物質(zhì)能源在分布式能源系統(tǒng)中的分布式能源應用模式與優(yōu)化策略優(yōu)化報告
- 醫(yī)藥流通行業(yè)2025年供應鏈風險管理與成本控制策略報告
- 職場語言運用2025年商務英語考試試題及答案
- 整套心理測試題及答案
- 綜合課程設計試題及答案
- 山水貴州答案及試題解析
- 安全工程師應試策略考題及答案
- 小石獅【經(jīng)典繪本】
- 大學計算機基礎實驗教程(高守平第2版)
- 2023年福建三明市初中畢業(yè)班數(shù)學質(zhì)量檢測卷(附答案)
- 金蝶固定資產(chǎn)管理系統(tǒng)
- LY/T 2457-2015西南樺培育技術(shù)規(guī)程
- GB/T 40998-2021變性淀粉中羥丙基含量的測定分光光度法
- GB/T 25840-2010規(guī)定電氣設備部件(特別是接線端子)允許溫升的導則
- 軍標類型整理文檔
- FZ/T 52019-2011萊賽爾短纖維
- 止血包扎(課件)
- 2022年湖南高二學業(yè)水平合格考試政治試卷真題及答案詳解
評論
0/150
提交評論