版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆安徽省池州市東至第二中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為了調(diào)查全國(guó)人口的壽命,抽查了11個(gè)?。ㄊ校┑?500名城鎮(zhèn)居民,這2500名城鎮(zhèn)居民的壽命的全體是()A.總體 B.個(gè)體C.樣本 D.樣本容量2.直線的傾斜角的大小為A. B.C. D.3.已知,則點(diǎn)到平面的距離為()A. B.C. D.4.命題:“?x<1,x2<1”的否定是()A.?x≥1,x2<1 B.?x≥1,x2≥1C.?x<1,x2≥1 D.?x<1,x2≥15.已知雙曲線,則雙曲線M的漸近線方程是()A. B.C. D.6.已知圓:,是直線的一點(diǎn),過(guò)點(diǎn)作圓的切線,切點(diǎn)為,,則的最小值為()A. B.C. D.7.直線:和圓的位置關(guān)系是()A.相離 B.相切或相交C.相交 D.相切8.若實(shí)數(shù)滿足約束條件,則最小值為()A.-2 B.-1C.1 D.29.已知銳角的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.10.已知函數(shù)只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A B.C. D.11.等差數(shù)列中,若,則()A.42 B.45C.48 D.5112.曲線:在點(diǎn)處的切線方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某次國(guó)際會(huì)議為了搞好對(duì)外宣傳工作,會(huì)務(wù)組選聘了50名記者擔(dān)任對(duì)外翻譯工作,在如表“性別與會(huì)外語(yǔ)”的列聯(lián)表中,______.會(huì)外語(yǔ)不會(huì)外語(yǔ)合計(jì)男ab20女6d合計(jì)185014.4與16的等比中項(xiàng)是________.15.已知函數(shù),則曲線在點(diǎn)處的切線方程為___________.16.如圖,在等腰直角中,,為半圓弧上異于,的動(dòng)點(diǎn),當(dāng)半圓弧繞旋轉(zhuǎn)的過(guò)程中,有下列判斷:①存在點(diǎn),使得;②存在點(diǎn),使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請(qǐng)?zhí)钌纤心阏J(rèn)為正確的結(jié)果的序號(hào)).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線和,設(shè)a為實(shí)數(shù),分別根據(jù)下列條件求a的值:(1)(2)18.(12分)已知圓:與x軸負(fù)半軸交于點(diǎn)A,過(guò)A的直線交拋物線于B,C兩點(diǎn),且.(1)證明:點(diǎn)C的橫坐標(biāo)為定值;(2)若點(diǎn)C在圓內(nèi),且過(guò)點(diǎn)C與垂直的直線與圓交于D,E兩點(diǎn),求四邊形ADBE的面積的最大值.19.(12分)一位父親在孩子出生后,每月給小孩測(cè)量一次身高,得到前7個(gè)月的數(shù)據(jù)如下表所示.月齡1234567身高(單位:厘米)52566063656870(1)求小孩前7個(gè)月的平均身高;(2)求出身高y關(guān)于月齡x的回歸直線方程(計(jì)算結(jié)果精確到整數(shù)部分);(3)利用(2)的結(jié)論預(yù)測(cè)一下8個(gè)月的時(shí)候小孩的身高參考公式:20.(12分)已知函數(shù),滿足,已知點(diǎn)是曲線上任意一點(diǎn),曲線在處的切線為.(1)求切線的傾斜角的取值范圍;(2)若過(guò)點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù)(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明22.(10分)已知函數(shù),在處有極值.(1)求、的值;(2)若,有個(gè)不同實(shí)根,求的范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由樣本的概念即知.【詳解】由題意可知,這2500名城鎮(zhèn)居民的壽命的全體是樣本.2、A【解析】考點(diǎn):直線的傾斜角專題:計(jì)算題分析:因?yàn)橹本€的斜率是傾斜角的正切值,所以欲求直線的傾斜角,只需求出直線的斜率即可,把直線化為斜截式,可得斜率,問(wèn)題得解解答:解:∵x-y+1=0可化為y=x+,∴斜率k=設(shè)傾斜角為θ,則tanθ=k=,θ∈[0,π)∴θ=故選A點(diǎn)評(píng):本題主要考查了直線的傾斜角與斜率之間的關(guān)系,屬于直線方程的基礎(chǔ)題型,需要學(xué)生對(duì)基礎(chǔ)知識(shí)熟練掌握3、A【解析】根據(jù)給定條件求出平面的法向量,再利用空間向量求出點(diǎn)到平面的距離.【詳解】依題意,,設(shè)平面的法向量,則,令,得,則點(diǎn)到平面的距離為,所以點(diǎn)到平面的距離為.故選:A4、C【解析】將特稱命題否定為全稱命題即可【詳解】根據(jù)含有量詞的命題的否定,則“?x<1,x2<1”的否定是“?x<1,x2≥1”.故選:C.5、C【解析】由雙曲線的方程直接求出見解析即可.【詳解】由雙曲線,則其漸近線方程為:故選:C6、A【解析】根據(jù)題意,為四邊形的面積的2倍,即,然后利用切線長(zhǎng)定理,將問(wèn)題轉(zhuǎn)化為圓心到直線的距離求解.【詳解】圓:的圓心為,半徑,設(shè)四邊形的面積為,由題設(shè)及圓的切線性質(zhì)得,,∵,∴,圓心到直線的距離為,∴的最小值為,則的最小值為,故選:A7、C【解析】直線l:y﹣1=k(x﹣1)恒過(guò)點(diǎn)(1,1),且點(diǎn)(1,1)在圓上,直線的斜率存在,故可知直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關(guān)系【詳解】圓C:x2+y2﹣2y=0可化為x2+(y﹣1)2=1∴圓心為(0,1),半徑為1∵直線l:y﹣1=k(x﹣1)恒過(guò)點(diǎn)(1,1),且點(diǎn)(1,1)在圓上且直線的斜率存在∴直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關(guān)系是相交,故選C【點(diǎn)睛】本題考查的重點(diǎn)是直線與圓的位置關(guān)系,解題的關(guān)鍵是確定直線恒過(guò)定點(diǎn),此題易誤選B,忽視直線的斜率存在8、B【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】由約束條件作出可行域如圖,聯(lián)立,解得,由,得,由圖可知,當(dāng)直線過(guò)時(shí),直線在軸上的截距最小,有最小值為故選:B9、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡(jiǎn)得到,化簡(jiǎn)得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因?yàn)椋?,可得,由正弦定理得,整理得,又由余弦定理,可得,因?yàn)?,所以,由,所以,因?yàn)槭卿J角三角形,且,可得,解得,所以,所以,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故的最小值為.故選:C10、B【解析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【詳解】由函數(shù)只有一個(gè)零點(diǎn),等價(jià)于函數(shù)的圖像與的圖像只有一個(gè)交點(diǎn),,求導(dǎo),令,得當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;故當(dāng)時(shí),函數(shù)取得極小值;當(dāng)時(shí),函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實(shí)數(shù)的取值范圍是故選:B【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.11、C【解析】結(jié)合等差數(shù)列的性質(zhì)求得正確答案.【詳解】依題意是等差數(shù)列,,.故選:C12、A【解析】因?yàn)?,所以曲線在點(diǎn)(1,0)處的切線的斜率為,所以切線方程為,即,選A二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】根據(jù)題意列方程組求解即可【詳解】由題意得所以,,.故答案為:2414、±8【解析】解析由G2=4×16=64得G=±8.答案±815、【解析】對(duì)函數(shù)求導(dǎo),由導(dǎo)數(shù)的幾何意義可得切線的斜率,求得切點(diǎn),由直線的點(diǎn)斜式方程可得所求切線的方程【詳解】函數(shù)的導(dǎo)數(shù)為∴,.曲線在點(diǎn)處的切線方程為,即.故答案為:.16、①②④【解析】①當(dāng)D為中點(diǎn),且A,B,C,D四點(diǎn)共面時(shí),可證得四邊形ABCD為正方形即可判斷①;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點(diǎn))時(shí),可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點(diǎn)時(shí),直線DB與平面ABC所成角的最大,作圖分析驗(yàn)證可判斷④.【詳解】①當(dāng)D為中點(diǎn),且A,B,C,D四點(diǎn)共面時(shí),連結(jié)BD,交AC于,則為AC中點(diǎn),此時(shí),且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點(diǎn))時(shí),此時(shí)有:平面ABC,,又因?yàn)?,所以平面CDB,所以,故②正確;③,當(dāng)平面平面ABC,且D為中點(diǎn)時(shí),h有最大值;當(dāng)A,B,C,D四點(diǎn)共面時(shí)h有最小值0,此時(shí)為平面圖形,不是立體圖形,故四面體D-ABC無(wú)最小值,故③錯(cuò)誤.④二面角D-AC-B為直二面角,且D為中點(diǎn)時(shí),直線DB與平面ABC所成角的最大,取AC中點(diǎn)O,連結(jié)DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設(shè),則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)a=4或a=-2(2)a=【解析】(1)根據(jù),由a(a-2)-2×4=0求解;(2)根據(jù),由4a=-2(a-2)求解.【小問(wèn)1詳解】解:因?yàn)?,所以a(a-2)-2×4=0,解得a=4或a=-2所以當(dāng)時(shí),a=4或a=-2;【小問(wèn)2詳解】因?yàn)椋?a=-2(a-2),解得a=檢驗(yàn):此時(shí),,成立所以當(dāng)時(shí),a=.18、(1)證明見解析(2)【解析】(1)設(shè)直線方程,與拋物線方程聯(lián)立,設(shè),,結(jié)合,得到,結(jié)合根與系數(shù)的關(guān)系,即可解得答案;(2)根據(jù)(1)所設(shè),表示出弦長(zhǎng),再求出,進(jìn)而表示出四邊形ADBE的面積,據(jù)此求其最大值,【小問(wèn)1詳解】由題意知點(diǎn)的坐標(biāo)為,易知直線的斜率存在且不為零,設(shè)直線:,,,聯(lián)立,得,則,即,由韋達(dá)定理得,由,即,得,即,代入,得或,又拋物線開口向右,,所以點(diǎn)的橫坐標(biāo)為定值.【小問(wèn)2詳解】由(1)知點(diǎn)的坐標(biāo)為,故,由(1)知點(diǎn)的坐標(biāo)為,由點(diǎn)在圓內(nèi),得,解得,又,得的斜率,故的方程為,即,故圓心到直線的距離為,由垂徑定理得,故,(),當(dāng)且僅當(dāng)時(shí),有最大值,所以四邊形的面積的最大值為.19、(1)62;(2);(3)74.【解析】(1)直接利用平均數(shù)的計(jì)算公式即可求解;(2)套公式求出b、a,求出回歸方程;(3)把x=8代入回歸方程即可求出.【小問(wèn)1詳解】小孩前7個(gè)月的平均身高為.【小問(wèn)2詳解】(2)設(shè)回歸直線方程是.由題中的數(shù)據(jù)可知.,..計(jì)算結(jié)果精確到整數(shù)部分,所以,于是,所以身高y關(guān)于月齡x的回歸直線方程為.【小問(wèn)3詳解】由(2)知,.當(dāng)x=8時(shí),y=3×8+50=74,所以預(yù)測(cè)8個(gè)月的時(shí)候小孩的身高為74厘米.20、(1)(2)【解析】(1)根據(jù)題意求出值,求導(dǎo)后通過(guò)導(dǎo)數(shù)的值域求出斜率范圍,從而得到傾角范圍.(2)利用導(dǎo)數(shù)幾何意義得到過(guò)P點(diǎn)的切線方程,化簡(jiǎn)后構(gòu)造m的函數(shù),求新函數(shù)的極大值極小值即可.【小問(wèn)1詳解】因?yàn)椋瑒t,解得,所以,則,故,,,,,切線的傾斜角的的取值范圍是,,.小問(wèn)2詳解】設(shè)曲線與過(guò)點(diǎn),的切線相切于點(diǎn),則切線的斜率為,所以切線方程為因?yàn)辄c(diǎn),在切線上,所以,即,由題意,該方程有三解設(shè),則,令,解得或,當(dāng)或時(shí),,當(dāng)時(shí),,所以在和上單調(diào)遞減,在上單調(diào)遞增,故的極小值為,極大值為,所以實(shí)數(shù)的取值范圍是.21、(1)答案見解析(2)證明見解析【解析】(1)求導(dǎo)得,進(jìn)而分和兩種情況討論求解即可;(2)根據(jù)題意證明,進(jìn)而令,再結(jié)合(1)得,研究函數(shù)的性質(zhì)得,進(jìn)而得時(shí),,即不等式成立.【小問(wèn)1詳解】解:函數(shù)的定義域?yàn)?,,∴?dāng)時(shí),在上恒成立,故函數(shù)在區(qū)間上單調(diào)遞增;當(dāng)時(shí),由得,由得,即函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;綜上,當(dāng)時(shí),在區(qū)間上單調(diào)遞增;當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;【小問(wèn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)軟件管理系統(tǒng)采購(gòu)協(xié)議樣本一
- 2025年度拆墻工程安全施工與質(zhì)量驗(yàn)收合同4篇
- 二零二五版智能法律咨詢APP下載服務(wù)條款3篇
- 二零二五年度消防培訓(xùn)與應(yīng)急演練服務(wù)合同3篇 - 副本
- 人教版九年級(jí)化學(xué)上冊(cè)第3章物質(zhì)構(gòu)成的奧秘《第2節(jié) 組成物質(zhì)的化學(xué)元素》第一課時(shí)公開課教學(xué)課件
- 2025年度拆除廣告牌與城市公共安全施工合同范本4篇
- 二零二五年度建筑鋼材材料代購(gòu)與配送服務(wù)合同3篇
- 2025年度建筑拆除與環(huán)保處理一體化施工合同4篇
- 2025年度工業(yè)用地場(chǎng)地代租賃合同參考范本4篇
- 2024院同樂(lè)分院中草藥保健品生產(chǎn)加工合同3篇
- 新員工入職培訓(xùn)測(cè)試題附有答案
- 勞動(dòng)合同續(xù)簽意見單
- 大學(xué)生國(guó)家安全教育意義
- 2024年保育員(初級(jí))培訓(xùn)計(jì)劃和教學(xué)大綱-(目錄版)
- 河北省石家莊市2023-2024學(xué)年高二上學(xué)期期末考試 語(yǔ)文 Word版含答案
- 企業(yè)正確認(rèn)識(shí)和運(yùn)用矩陣式管理
- 分布式光伏高處作業(yè)專項(xiàng)施工方案
- 陳閱增普通生物學(xué)全部課件
- 檢驗(yàn)科主任就職演講稿范文
- 人防工程主體監(jiān)理質(zhì)量評(píng)估報(bào)告
- 20225GRedCap通信技術(shù)白皮書
評(píng)論
0/150
提交評(píng)論