




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆安徽省宿州市數學高二上期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為、,點在橢圓上,若,則的面積為()A. B.C. D.2.在等差數列中,,則的公差為()A.1 B.2C.3 D.43.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.4.已知,若與的展開式中的常數項相等,則()A.1 B.3C.6 D.95.設為數列的前n項和,,且滿足,若,則()A.2 B.3C.4 D.56.已知F為橢圓C:=1(a>b>0)右焦點,O為坐標原點,P為橢圓C上一點,若|OP|=|OF|,∠POF=120°,則橢圓C的離心率為()A. B.C.-1 D.-17.函數的圖象在點處的切線的傾斜角為()A. B.0C. D.18.某考點配備的信號檢測設備的監(jiān)測范圍是半徑為100米的圓形區(qū)域,一名工作人員持手機以每分鐘50米的速度從設備正東方向米的處出發(fā),沿處西北方向走向位于設備正北方向的處,則這名工作人員被持續(xù)監(jiān)測的時長為()A.1分鐘 B.分鐘C.2分鐘 D.分鐘9.若且,則下列選項中正確的是()A B.C. D.10.某雙曲線的一條漸近方程為,且焦點為,則該雙曲線的方程是()A. B.C. D.11.已知復數滿足(其中為虛數單位),則復數的虛部為()A. B.C. D.12.給出下列結論:①如果數據的平均數為3,方差為0.2,則的平均數和方差分別為14和1.8;②若兩個變量的線性相關性越強,則相關系數r的值越接近于1.③對A、B、C三種個體按3:1:2的比例進行分層抽樣調查,若抽取的A種個體有15個,則樣本容量為30.則正確的個數是().A.3 B.2C.1 D.0二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與垂直,則m的值為______14.已知直線:和:,且,則實數__________,兩直線與之間的距離為__________15.歐陽修在《賣油翁》中寫道:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕,可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢是直徑為4cm的圓,中間有邊長為1cm的正方形孔,若你隨機地向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率是_______16.用數學歸納法證明等式:,驗證時,等式左邊________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:短軸長為2,且點在C上(1)求橢圓C的標準方程;(2)設、為橢圓的左、右焦點,過的直線l交橢圓C與A、B兩點,若的面積是,求直線l的方程18.(12分)已知函數,當時,有極大值3(1)求的值;(2)求函數的極小值19.(12分)已知橢圓(a>b>0)的右焦點為F2(3,0),離心率為e.(1)若e=,求橢圓的方程;(2)設直線y=kx與橢圓相交于A,B兩點,M,N分別為線段AF2,BF2的中點,若坐標原點O在以MN為直徑的圓上,且<e≤,求k的取值范圍.20.(12分)已知復數,是實數.(1)求復數z;(2)若復數在復平面內所表示的點在第二象限,求實數m的取值范圍.21.(12分)在等差數列{an}中,a3+a4=15,a2a5=54,公差d<0.(1)求數列{an}的通項公式an;(2)求數列的前n項和Sn的最大值及相應的n值22.(10分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出,可知為等腰三角形,取的中點,可得出,利用勾股定理求得,利用三角形的面積公式可求得結果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點,因為,則,由勾股定理可得,所以,.故選:B.2、A【解析】根據等差數列性質可得方程組,求得公差.【詳解】等差數列中,,,由通項公式可得解得故選:A3、C【解析】設,代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設,則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設弦兩端點的坐標,代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標,有.這種方法叫點差法4、B【解析】根據二項展開式的通項公式即可求出【詳解】的展開式中的常數項為,而的展開式中的常數項為,所以,又,所以故選:B5、B【解析】由已知條件可得數列為首項為2,公差為2的等差數列,然后根據結合等差數列的求和公式可求得答案【詳解】在等式中,令,可得,所以數列為首項為2,公差為2的等差數列,因為,所以,化簡得,,解得或(舍去),故選:B6、D【解析】記橢圓的左焦點為,在中,通過余弦定理得出,,根據橢圓的定義可得,進而可得結果.【詳解】記橢圓的左焦點為,在中,可得,在中,可得,故,故,故選:D.7、A【解析】求出導函數,計算得切線斜率,由斜率求得傾斜角【詳解】,設傾斜角為,則,,故選:A8、C【解析】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,求得直線和圓的方程,利用點到直線的距離公式和圓的弦長公式,求得的長,進而求得持續(xù)監(jiān)測的時長.【詳解】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,如圖所示,則,,可得,圓記從處開始被監(jiān)測,到處監(jiān)測結束,因為到的距離為米,所以米,故監(jiān)測時長為分鐘故選:C.9、C【解析】對于A,作商比較,對于B,利用基本不等式的推廣式判斷,對于C,利用在單位圓中,內接正邊形的面積小于內接正邊形的面積判斷,對于D,利用放縮法判斷【詳解】,故錯誤;,故錯誤;在單位圓中,內接正邊形的面積小于內接正邊形的面積(必修三閱讀材料割圓術),則,故正確;,故錯誤故選:C【點睛】關鍵點點睛:此題考查不等式的綜合應用,考查基本不等式的推廣式的應用,考查放縮法的應用,對于C項解題的關鍵是利用了在單位圓中,內接正邊形的面積小于內接正邊形的面積求解,考查數學轉化思想,屬于難題10、D【解析】設雙曲線的方程為,利用焦點為求出的值即可.【詳解】因為雙曲線的一條漸近方程為,且焦點為,所以可設雙曲線的方程為,則,,所以該雙曲線方程為.故選:D.11、A【解析】由題目條件可得,即,然后利用復數的運算法則化簡.【詳解】因為,所以,則故復數的虛部為.故選:A.【點睛】本題考查復數的相關概念及復數的乘除運算,按照復數的運算法則化簡計算即可,較簡單.12、B【解析】對結論逐一判斷【詳解】對于①,則的平均數為,方差為,故①正確對于②,若兩個變量的線性相關性越強,則相關系數r的絕對值越接近于1,故②錯誤對于③,對A、B、C三種個體按3:1:2的比例進行分層抽樣調查,若抽取的A種個體有15個,則樣本容量為,故③正確故正確結論為2個故選:B二、填空題:本題共4小題,每小題5分,共20分。13、0或-9##-9或0【解析】根據給定條件利用兩直線互相垂直的性質列式計算即得.【詳解】因直線與垂直,則有,解得或,所以m的值為0或-9.故答案為:0或-914、①.-4;②.2【解析】根據兩直線平行斜率相等求解參數即可;運用兩平行線間的距離公式計算兩直線之間的距離可得出答案.【詳解】解:直線和,,,解得;∴兩直線與間的距離是:.故答案為:;2.15、【解析】分別求出圓和正方形的面積,結合幾何概型的面積型計算公式進行求解即可.【詳解】因為銅錢的面積為,正方形孔的面積為,所以隨機地向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率是.故答案為:【點睛】本題考查了幾何概型計算公式,考查了數學運算能力,屬于基礎題.16、【解析】根據數學歸納法的步驟即可解答.【詳解】用數學歸納法證明等式:,驗證時,等式左邊=.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)根據短軸長求出b,根據M在C上求出a;(2)根據題意設直線l為,與橢圓方程聯(lián)立得根與系數關系,根據=即可求出m的值.【小問1詳解】∵短軸長為2,∴,∴,又∵點在C上,∴,∴,∴橢圓C的標準方程為;【小問2詳解】由(1)知,∵當直線l斜率為0時,不符合題意,∴設直線l的方程為:,聯(lián)立,消x得:,∵,∴設,,則,∵,∴,∴,即,解得,∴直線l的方程為:或.18、(1);(2)0【解析】(1)由題意得,則可得到關于實數的方程組,求解方程組,即可求得的值;(2)結合(1)中的值得出函數的解析式,即可利用導數求得函數的極小值.【詳解】(1),當時,有極大值3,所以,解得,經檢驗,滿足題意,所以;(2)由(1)得,則,令,得或,列表得極小值極大值易知是函數的極小值點,所以當時,函數有極小值0【點睛】本題主要考查了函數的極值的概念,以及利用導數求解函數的極值,考查了學生對極值概念的理解與運算求解能力.19、(1);(2)【解析】(1)根據右焦點為F2(3,0),以及,求得a,b,c即可.(2)聯(lián)立,根據M,N分別為線段AF2,BF2中點,且坐標原點O在以MN為直徑的圓上,易得OM⊥ON,則四邊形OMF2N為矩形,從而AF2⊥BF2,然后由0,結合韋達定理求解.【詳解】(1)由題意得c=3,,所以.又因為a2=b2+c2,所以b2=3.所以橢圓的方程為.(2)由,得(b2+a2k2)x2-a2b2=0.設A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=,依題意易知,OM⊥ON,四邊形OMF2N為矩形,所以AF2⊥BF2.因為(x1-3,y1),(x2-3,y2),所以(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0.即,將其整理為k2==-1-.因為<e≤,所以2≤a<3,12≤a2<18.所以k2≥,即k∈【點睛】關鍵點點睛:本題第二問的關鍵是由O在以MN為直徑的圓上,即OM⊥ON,得到四邊形OMF2N為矩形,推出AF2⊥BF2,結合韋達定理得出斜率k與離心率e的關系.20、(1)(2)【解析】(1)先將代入化簡,再由其虛部為零可求出的值,從而可求出復數,(2)先對化簡,再由題意可得從而可求得結果【小問1詳解】因為,所以,因為是實數,所以,解得.故.【小問2詳解】因為,所以.因為復數所表示的點在第二象限,所以解得,即實數m的取值范圍是.21、(1);(2)當或11時,最大值為55.【解析】(1)根據等差數列的通項公式得方程組,解這個方程組得公差和首項,從而得數列的通項公式n.(2)等差數列的前項和是關于的二次式,將這個二次式配方即可得最大值.【詳解】(1)由題設,故(舍,此時)或.故,故.(2)由(1)可得,因為,對稱方程為,故當或時,取最大值,此時最大值為.22、(1)證明見解析(2)【解析】(1)先利用正方形和梯形的性質證明線面平行,然后再根據線面平行證明面面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 預應力張拉方法
- 施工作業(yè)人員法律法規(guī)告知
- Brand KPIs for neobanking Banco Original in Brazil-英文培訓課件2025.4
- Brand KPIs for hotels:Best Western in the United States-英文培訓課件2025.5
- 雙頻共口徑高隔離陣列天線設計
- 汽車傳感器與檢測技術電子教案:空氣質量傳感器
- 房地產企業(yè)計稅成本的扣除變化分析
- 佛山新中源國際商務公寓營銷策劃報告41p
- 城鄉(xiāng)醫(yī)療住院管理制度
- 中考地理復習教案第9課時 東南亞南亞西亞歐洲西部極地地區(qū)
- 人行道欄桿計算
- 小學心理健康教育-我會舉手發(fā)言教學設計學情分析教材分析課后反思
- 東南大學高等數學實驗報告-2
- 江蘇省連云港市海州區(qū)2022-2023學年八年級下學期期末數學試題(含答案)
- 西師版小學數學-畢業(yè)總復習資料
- 氣瓶內殘液殘氣處理操作規(guī)程
- 關于英國物業(yè)收費的討論
- 《陋室銘》之托物言志學習課件
- 漢明碼編譯碼實驗新編
- 電大可編程控制器應用實訓 形考任務6
- 部編版《語文》三年級下冊全冊教案及反思
評論
0/150
提交評論