福建省廈門工學院附屬學校2023年高二數學第一學期期末達標檢測試題含解析_第1頁
福建省廈門工學院附屬學校2023年高二數學第一學期期末達標檢測試題含解析_第2頁
福建省廈門工學院附屬學校2023年高二數學第一學期期末達標檢測試題含解析_第3頁
福建省廈門工學院附屬學校2023年高二數學第一學期期末達標檢測試題含解析_第4頁
福建省廈門工學院附屬學校2023年高二數學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省廈門工學院附屬學校2023年高二數學第一學期期末達標檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓與拋物線的準線相切,則實數p的值為()A.2 B.6C.3或8 D.2或62.雙曲線的離心率是,則雙曲線的漸近線方程是()A. B.C. D.3.在三棱錐中,,D為上的點,且,則()A. B.C. D.4.已知拋物線上一橫坐標為5的點到焦點的距離為6,且該拋物線的準線與雙曲線(,)的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.4C.6 D.95.命題:,的否定為()A., B.不存在,C., D.,6.2020年北京時間11月24日我國嫦娥五號探月飛行器成功發(fā)射.嫦娥五號是我國探月工程“繞、落、回”三步走的收官之戰(zhàn),經歷發(fā)射入軌、地月轉移、近月制動、環(huán)月飛行、著陸下降、月面工作、月面上升、交會對接與樣品轉移、環(huán)月等待、月地轉移、再入回收等11個關鍵階段.在經過交會對接與樣品轉移階段后,若嫦娥五號返回器在近月點(離月面最近的點)約為200公里,遠月點(離月面最遠的點)約為8600公里,以月球中心為一個焦點的橢圓形軌道上等待時間窗口和指令進行下一步動作,月球半徑約為1740公里,則此橢圓軌道的離心率約為()A.0.32 B.0.48C.0.68 D.0.827.在正方體中,P,Q兩點分別從點B和點出發(fā),以相同的速度在棱BA和上運動至點A和點,在運動過程中,直線PQ與平面ABCD所成角的變化范圍為A. B.C. D.8.已知等差數列中,,則()A.15 B.30C.45 D.609.已知橢圓C:的左右焦點為F1,F2,離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B.C. D.10.斗笠,用竹篾夾油紙或竹葉粽絲等編織,是人們遮陽光和雨的工具.某斗笠的三視圖如圖所示(單位:),若該斗笠水平放置,雨水垂直下落,則該斗笠被雨水打濕的面積為()A. B.C. D.11.“十二平均律”是通用的音律體系,明代朱載堉最早用數學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.12.已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數n的值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若曲線在處的切線平行于x軸,則___________.14.已知拋物線:,過焦點作傾斜角為的直線與交于,兩點,,在的準線上的投影分別為,兩點,則__________.15.必然事件的概率是________.16.若,是雙曲線與橢圓的共同焦點,點P是兩曲線的一個交點,且為等腰三角形,則該雙曲線的漸近線為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線過點.(1)求拋物線方程;(2)若直線與拋物線交于兩點兩點在軸的兩側,且,求證:過定點.18.(12分)公差不為0的等差數列中,,且成等比數列(1)求數列的通項公式;(2)設,數列的前n項和為.若,求的取值范圍19.(12分)已知橢圓C:的離心率為,左、右焦點分別為、,橢圓上的點到左焦點最近的距離為.(1)求橢圓C的方程;(2)若經過點的直線與橢圓C交于M,N兩點,當的面積取得最大值時,求直線的方程.20.(12分)已知等差數列的前項和為,,.(1)求的通項公式;(2)設數列的前項和為,用符號表示不超過x的最大數,當時,求的值.21.(12分)如圖,在四棱錐中,為平行四邊形,,平面,且,點是的中點.(1)求證:平面;(2)在線段上(不含端點)是否存在一點,使得二面角的余弦值為?若存在,確定的位置;若不存在,請說明理由.22.(10分)已知圓C經過,,三點,并且與y軸交于P,Q兩點,求線段PQ的長度.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由拋物線準線與圓相切,結合拋物線方程,令求切線方程且拋物線準線方程為,即可求參數p.【詳解】圓的標準方程為:,故當時,有或,所以或,得或6故選:D2、B【解析】利用雙曲線的離心率,以及漸近線中,關系,結合找關系即可【詳解】解:,又因為在雙曲線中,,所以,故,所以雙曲線的漸近線方程為,故選:B3、B【解析】根據幾何關系以及空間向量的線性運算即可解出【詳解】因為,所以,即故選:B4、A【解析】由題意求得拋物線的準線方程為,進而得到準線與雙曲線C的漸近線圍成的三角形面積,求得,再結合和離心率的定義,即可求解.【詳解】由題意,拋物線上一橫坐標為5的點到焦點的距離為6,根據拋物線定義,可得,即,所以拋物線的準線方程為,又由雙曲線C的兩條漸近線方程為,則拋物線的準線與雙曲線C的兩條漸近線圍成的三角形面積為,解得,又由,可得,所以雙曲線C的離心率.故選:A.5、D【解析】含有量詞的命題的否定方法:先改變量詞,然后再否定結論即可【詳解】解:命題:,的否定為:,故選:D6、C【解析】由題意可知,求出的值,從而可求出橢圓的離心率【詳解】解:由題意得,解得,所以離心率,故選:C7、C【解析】先過點作于點,連接,根據題意,得到即為直線與平面所成的角,設正方體棱長為,設,推出,進而可求出結果.【詳解】過點作于點,連接,因為四棱柱為正方體,所以易得平面,因此即為直線與平面所成的角,設正方體棱長為,設,則,,因為兩點分別從點和點出發(fā),以相同的速度在棱和上運動至點和點,所以,因此,所以,因為,所以,則,因此.故選:C.【點睛】本題主要考查求線面角的取值范圍,熟記線面角的定義即可,屬于??碱}型.8、D【解析】根據等差數列的性質,可知,從而可求出結果.【詳解】解:根據題意,可知等差數列中,,則,所以.故選:D.9、A【解析】根據橢圓的定義可得△AF1B的周長為4a,由題意求出a,結合離心率計算即可求出c,再求出b即可.【詳解】由橢圓的定義知,△AF1B的周長為,又△AF1B的周長為4,則,,,,,所以方程為,故選:A.10、A【解析】根據三視圖可知,該幾何體是由一個底面半徑為10,高為20的圓錐和寬度為20的圓環(huán)組成的幾何體,則所求面積積為圓錐的側面積與圓環(huán)的面積之和【詳解】根據三視圖可知,該幾何體是由一個底面半徑為10,高為20的圓錐和寬度為20的圓環(huán)組成的幾何體,所以該斗笠被雨水打濕的面積為,故選:A11、D【解析】分析:根據等比數列的定義可知每一個單音的頻率成等比數列,利用等比數列的相關性質可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數列的實際應用,解決本題的關鍵是能夠判斷單音成等比數列.等比數列的判斷方法主要有如下兩種:(1)定義法,若()或(),數列等比數列;(2)等比中項公式法,若數列中,且(),則數列是等比數列.12、C【解析】首先根據拋物線焦半徑公式得到,從而得到,再根據曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點為,,因為雙曲線的一條漸近線與直線平行,所以,解得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出導函數得到函數在時的導數,由導數值為0求得a的值【詳解】由,得,則,∵曲線在點處的切線平行于x軸,∴,即.故答案為:14、【解析】設,則,將直線方程與拋物線方程聯立,結合韋達定理即得.【詳解】由拋物線:可知則焦點坐標為,∴過焦點且斜率為的直線方程為,化簡可得,設,則,由可得,所以則故答案為:15、1【解析】直接由必然事件的定義求解【詳解】因為必然事件是一定要發(fā)生的,所以必然事件的概率是1,故答案為:116、【解析】根據給定條件求出兩曲線的共同焦點,再由橢圓、雙曲線定義求出a,b即可計算作答.【詳解】橢圓的焦點,由橢圓、雙曲線的對稱性不妨令點P在第一象限,因為等腰三角形,由橢圓的定義知:,則,,由雙曲線定義知:,即,,,所以雙曲線的漸近線為:.故答案為:【點睛】易錯點睛:雙曲線(a>0,b>0)漸近線方程為,而雙曲線(a>0,b>0)的漸近線方程為(即),應注意其區(qū)別與聯系.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)運用代入法直接求解即可;(2)設出直線的方程與拋物線方程聯立,結合一元二次方程根與系數關系、平面向量數量積的坐標表示公式進行求解即可.【小問1詳解】由已知可得:;【小問2詳解】的斜率不為設,,∴OA→?因為直線與拋物線交于兩點兩點在軸的兩側,所以,即過定點.【點睛】關鍵點睛:運用一元二次方程根與系數關系是解題的關鍵.18、(1)(2)【解析】(1)利用等比數列的定義以及等差數列的性質,列出方程即可得到答案;(2)先求出的通項,再利用的單調性即可得到的最小值,從而求得的取值范圍【小問1詳解】依題意,,,所以,設等差數列的公差為,則,解得,所以【小問2詳解】,則數列是遞增數列,,所以,若,則.19、(1)(2)【解析】(1)根據題意得,,進而解方程即可得答案;(2)根據題意設直線的方程,,,進而,再聯立方程,結合韋達定理求解即可.【小問1詳解】解:因為橢圓C:的離心率為,所以,因為橢圓上的點到左焦點最近的距離為,所以所以,所以橢圓C的方程為.【小問2詳解】解:根據題意,設直線的方程,,設,聯立方程得,所以,解得或.,所以的面積為令,則,當且僅當,即時,等號成立.所以當的面積取得最大值時,直線的方程為.20、(1)(2)9【解析】(1)首先根據已知條件分別求出的首項和公差,然后利用等差數列的通項公式求解即可;(2)首先利用等差數列求和公式求出,然后利用裂項相消法和分組求和法求出,進而可求出的通項公式,最后利用等差數列求和公式求解即可.【小問1詳解】不妨設等差數列的公差為,故,,解得,,從而,即的通項公式為.【小問2詳解】由題意可知,,所以,故,因為當時,;當時,,所以,由可知,,即,解得,即值為9.21、(1)見解析(2)存在,【解析】(1)連接交于點,由三角形中位線性質知,由線面平行判定定理證得結論;(2)以為原點建立空間直角坐標系,假設,可用表示出點坐標;根據二面角的向量求法可根據二面角的余弦值構造出關于的方程,從而解得結果.【詳解】(1)連接交于點,連接,四邊形為平行四邊形,為中點,又為中點,,平面,平面,平面;(2)平面,,兩兩互相垂直,則以為坐標原點,可建立如下圖所示的空間直角坐標系:則,,,,,,設,且,則,,即,設平面的法向量,又,,則,令,則,,;設平面的一個法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論